
ON FILE y

LABORATORY FOR MASSACHUSETTS
INSTITUTE OF

COMPUTER SCIENCE It TECHNOLOGY

(D
0D

MIT/LCS/TM-364

ON THE CORRECTNESS OF
ATOMIC MULTI-WRITER

REGISTERS

Russel Schaffer

Edited by Bard Bloom

DTIC
AUG S 6 1988

H

June 1988

545 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSETTS 02139

Unclassified

4SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
Za, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION I AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TM-364 N00014-85-K-0168, N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (If appicable) Office of Naval Research/Department of Navy
Science

6<. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

&a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)
DARPA/DOD I

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
10WisnBv.PROGRAM 'PROJECT ITASK 'WORK UNIT

Arlington, VA 22217 ELEMENT NO. NO. NO ACCESSION NO.

11 TITLE (Include Security Classfication)

On the Correctness of Atomic Multi-Writer Registers

12 PERSONAL AUTHOR(S)
Schaffer, Russel

13a TYPE OF REPORT 1 3b TIME COVERED 14. DRATE OF REPORT (Year, Month, Day) 15 PAGE COUNT
Technical FROM TO 1988 June 58

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on rieverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP , atomic registerb; multizwriter registers; wait-free.

I/O Automata

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Errors are corrected in a previously published multi-writer register algorithm.

The correctness of the modified algorithm is proved, in detail, using I/0 automata.

20 DISTRIBUTION IAVAILABILITY OF ABSTRACT 121 ABSTRA(CT SEC.URITY CLASSIFICATION
[UNCLASSIEDUNLMITED 0' SAME AS RPT 0] DTIC USERSu UnuLassified

22a NAME 09 RESPONSIBLE INDIVIDUAL 122b TELEPHONE (include Area Code) 22c OFFICE SYMBOL

Jud Ltte. Publications Coordinator I(617) 253-5894

OD' _. 0 FORM 1473, 84 MAR 83 APR editon may be used unti ehausted SECURITY CLASSIFICATION OF THIS PAGE

. "?.All other editions are obsolete

• Unclassified

S%
% % %

On the Correctness
of

Atomic Multi-Writer Registers

Russel Schaffer

) ~~IJ), rici: Vi-rrto, I recrd itia iireii,IV pidiisijIcd iiiIi-wrii.r rifI-

Fhft %%ork)' S -Iioiffr uand BI-m mnxas tipiicd: fiI part I,\ i. O)ffice(-I

0wl l,-a r t l I ') rc ,0I

I0C - 2 tI -

N N -0 'a

Editor's Note

This is Russel Schaffer's Bachelor's Thesis, written under the direction of Nancy Lynch
at MIT. He tried to prove the correctness of the multi-writer register given in [PB), using
the proof methods of [BB]. His proof revealed that the protocol in [PB] was incorrect,
and revealed how to fix it.

The academic year is over, and Russel Schaffer does not have access to computers at

the moment. A few minor changes have been made to this document; a more polished
version is in preparation. (In particular, the initial writes to the register will be handled
correctly, and a somewhat more intuitive reader-placement proof will be presented.) As
register protocols are an active area of research, it seems desirable to make this work
available in preliminary form as soon as possible.

True understanding of a register algorithm is as hard to hold as an Aurora Borealis,
and as hard to put in words. Even the simplest protocols are very hard to understand
correctly, and the best researchers in the field have been mislead by their intuition.

Schaffer does not depend on intuition. Every statement in this proof is in ordinary
mathematical language; if you're not sure of exactly what it means, you can look at
the definitions and watch the automaton make transitions and figure it out.1 Every
statement in this proof can be understood and checked without undue effort. Given
time and energy - mathematical inspiration is not necessary - this proof can be verified.

I hope that this work will provide inspiration to researchers trying to write easily
understandable, checkable, and complete proofs of atomic register protocols.

Bard Bloom, editor
Cambridge, Mass
June 9, 1988

71 on For

SActjally, you do have to compile the Pascal code to I/O Automaton states yourself. .

%.

. -,0. ,, : .. .

1 Introduction

The problem of constructing a multi-writer, multi-reader atomic register was first intro-
A duced by Lamport [LL] and Peterson [P]. It has, at this point, been addressed by several

papers by different authors [BB],[IL],[LV],[PB],[VA]. As a result of the difficult nature
of the the problem, however, most of these papers are rather hard to understand; it is
not generally easy to grasp the intuition behind some of the algorithms, and the proofs
of correctness provided are sometimes not as rigorous or detailed as one would desire
for a problem of this difficulty. Indeed, in the cases of [PB] and [VA], close examination
of the algorithms uncovered problems with the correctness of the algorithms.

There is, however, one paper on the subject that distinguishes itself as both intu-4,: itively appealing and completely rigorous; that paper presents a construction for the
specific case of a two-writer, multi-reader atomic register [BB]. It is the purpose of this
paper to to provide both an intuitive feel for and a rigorous proof of correctness of a
modified version of the more general algorithm presented in (PB]; [BB] is used as a

v: model for this paper. Consequently, many of the facts proved in this paper axe the same
as or resemble those proved in [BB] or [PB]. The terminology and notation of these
papers has been largely retained in the interest of consistency.

It was necessary to prove correct a modified version of the algorithm from [PB]
because, in the course of developing this proof, bugs were found in the algorithm from
[PB]. Changes were thus made to the algorithm from [PB], some of them in consultation
with one of the authors of [PB], to correct the problems with the published algorithm.

The modified version of the algorithm from [PB] constructs an m-writer n-reader
atomic register from m 1-writer m+n-reader atomic registers. The algorithm reqires
that each of these registers be large enough to contain any of the values that could be
written to the m-writer n-reader atomic register, as well as O(m) storage for control
information that is used by the algorithm. In the worst case, the algorithm requires

'-" O(m 2) accesses to 1-writer m+n-reader atomic registers to perform a write to or a read
of the m-writer n-reader atomic register.

The proof of correctness of the algorithm is carried out within the framework of the
I/O automaton model. It is based on arguments about the order of particular actions
in sequences of actions, and proceeds by proving various lemmas and theorems that
capture the essential aspects of the algorithm in a rigorous way. As such, a careful

S.reading of the proof should convince one of the correctness of the algorithm.

The next section of the paper presents the I/O automaton in the context of which the
proof of correctness will be developed. The following section presents, in formal terms,
the problem that we are trying to solve. The fourth section presents the architecture

- that will implement the solution. The fifth section gives an informal description of the
5 various aspects of the algorithm. The sixth section gives a formal description, in the

form of code, of the algorithm. The seventh section presents the proof of correctnss.
The eighth section presents the conclusions of the paper. Finally, the appendix presents
the counterexamples that were found to the algorithm published in [PB]. The paper

I"I

,,,'s_

-%,f' ,, ',a '
'
,, d ,,#,". .. ,,, . ,. .. "..,' % - ,, . .. ,, . ,' . r ." -. .. ' , • .. , ., .,,t .. -t ,. . , .5. ,. %,.% % ,

body should be read sequentially. The appendix, however, depends only on the the first
six sections of the paper.

2 The Model

This paper presents the algorithm within the framework of the I/O automaton model.
The following formal description of a subset of that model is copied, with modifications,
from [Ly]. Further description of this model may be found in [LT1] and [LT2]

We will assume a universal set of actions. Sequences of actions will be used to
describe the behavior of modules in concurrent systems. Since the same action may
occur several times in a sequence, it is convenient to distinguish the different occurrences;
we refer to a particular occurrence of an action in a sequence as an event.

The actions of each automaton are classified as input, output, or internal. The

distinctions are that input actions are not under the automaton's control, output actions
are under the automaton's control and externally observable, and internal actions are

* ,under the automaton's control but not externally observable. In order to describe this
* classification, each automaton comes equipped with an "action signature".

An action signature S is an ordered triple consisting of three pairwise-disjoint sets
of actions. We write in(S), out(S) and int(S) for the three components of S, and refer
to the actions in the three sets as the input actions, output actions and internal actions
of S, respectively. We will let acts(S) = in(S)U out(S)U int(S) and will refer to acts(S)
as the set of actions of S. We will refer to the actions under the automaton's control
as local(S); local(S) = out(S) U int(S). The actions ext(S) = in(S) U out(S) will be
refered to as the exteral actions of the automaton.

Since I/0 automata are intended to model complex systems with any number of
primitive components, each automaton A comes equipped with an abstract notion of
"component"; formally, these components are described by an equivalence relation on
local(sig(A)) where all the actions in one equivalence class are to be thought of as under

- - the control of the same primitive system component.

We will think of an I/O automaton as consisting of the following components:

* 1. An action signature sig(A).

2. A set states(A) of states.

3. A nonempty set start(A) C states(A) of start states.

4. A transition relation steps(A) C states(A) x acts(sig(A)) > states(A), with the
property that for every state s' and input action 7r there is a transition (s', r, s)
in steps(A).

5. An equivalence relation, as described above, part(A) on local(sig(A)) having at
most countably many equivalence classes.

3

-P.-

................ ,..........-.......-......... - -.,..,... .,,..
.,.,,.-..~...--.....--....- ,-....,....-.. ,.,.- , .:. -, ".

We refer to an element (s', ,r, s) of steps(A) as a step of A.

An execution of A is a finite or infinite alternating sequence of states and actions

So, 7r, 8l7r2,82,... such that so E start(A). We denote the set of executions of A by
ezecs(A). Throughout the proof of correctness of the algorithm, we will want to refer
to states within the context of an execution. Thus when we refer to the state a, in the
execution above, we are refering to both its place in the execution and to the global
state of the automaton that it represents. Consequently, it will make sense to say that
si < 82 or si < 7 2 in the above execution.

A fair execution of an automaton A is defined to be an execution a of A such that
the following conditions hold for each class C of part(A).

1. If a is finite, then no action of C is enabled in the final state of a.

S.q 42. If a is infinite, then either a contains infinitely many events from C, or else a
contains infinitely many occurrences of states in which no action of C is enabled.

Thus, a fair execution gives "fair turns" to each class of part(A).

* A finite or infinite sequence of actions of A is said to be a schedule of A if it is the
subsequence of some execution e of A consisting of all of the actions in e. We denote
the set of schedules of A by scheds(A). A schedule is said to be a fair schedule if it is

S-. the subsequence of actions of some fair execution.

The remaining definitions relate the method by which a collection of automata is
composed to form a new automaton.

A countable collection S of action signatures is said to be compatible if it satisfies
the following two properties for every S', S" E S, S' # S":

1. out(S') n out(S") = 0.

2. int(S') n acts(S") = 0.

Thus, no action is an output of more than one signature in the collection, and internal
actions of any signature do not appear in any other signature in the collection.

* The composition S of a countable collection 8 of compatible action signatures is
defined to be the action signature with

1. in(S) Us'Es in(S') \ US'ES out(S').

" 2. out(S) = Us'Es out(S').

3. int(S) = Us'ES irt(S').

* 4

6%

-*ila

. r,~d ~ % ~ P N~~~'a~N

-p N°"

Thus, output actions are those that are outputs of any of the component signatures,
and similarly for internal actions. Input actions are any actions that are inputs to any
of the component signatures, but outputs of no component signature.

The composition A of a countable collection A of automata with compatible action
signatures has the following components; let I be an index set for A:

1. sig(A) is the composition of {sig(A')A' E A}.

2. states(A) = -iEl states(A,).

3. start(A) = rl'EIlstart(Ai).

4. steps(A) is the set of triples

,-":" ((s9i), 7r, (s ,)) E states(A) x sig(A) x states(A)
such that for all i E I: if r E acts(A,) then (si, 7r, s) E steps(A,) and if lr

N acts(A) then si = s,.

* 5. part(A) = UAEApart(A').

Each step of the composition automaton thus consists of all the automata that have
a particular action in their signatures performing that action concurrently, while the
automata that do not have that action in their signatures do nothing. In other words,
all component automata in a composition continue to act autonomously.

3 The Problem

The problem of constructing an m-writer n-reader atomic register will be seen as that
of constructing an I/O automaton with the following actions and properties:

1. The I/O automaton should have the input actions Startw(i, v) and output ac-
tions Finishw(i) for all i, 1 < i < m and all values v the register is capable of

0 containing. Similarly, it should have input actions StartR(j) and output actions
FinishR(j, v) for all j, 1 < i _ n.

2. In any fair execution of the automaton, there is no event Startw(i, v')' interposed
between a given event Startw(i, v) and the first event Finishw(i) to follow the
event Startw(i, v). Also, there is no event Finishw(i)' between a given event

* Finishw(i) and the first event Startw(i, v) to follow Finishw(i). Similarly for
the StartR(j) and Finish(j, v). 2

,This definition is formally incorrect; all I/0 automata are input-enabled, and cannot refuse

Startw(.,,) actions. The correct way to state this in this model is to allow the automaton any be-
havior for sequences which violate this condition; see (BB]. This will be corrected in a later version of

0

:J... -:, ." . -. -""''"",.. ,,,,'.' .. - " •". .. ", . .,'" . ",".. " . ' ,..."" .',".. .-" '. ;' ',.
'

.,, 2. s" ' "",

3. Given a fair schedule /3 of the automaton, it should be possible to insert an action
Atomicw(i) between any event Startw(i, v) and the following Finishw(i), and an
event AtomicR(j) between any event StartR(j) and the following FinishR(j, v),
to create a new schedule 0' about which the following is true: given any events
Atomicw(i) and AtomicR(j) in /, if ew - Startw(i, vW) is the last event of the
form Startw(i, v) preceding Atomicw and if e= FinishR(j, VR is the first event

-of the form FinishR(j, v) following AtomicR, then vw = yR.

An m-writer n-reader atomic register is an automaton that satisfies the above require-
ments in such a manner that readers and writers do not wait (a condition we will
elaborate upon later).

Intuitively, the first of the above requirements states that there are m channels along
which writers i may initiate writes of values v to the m-writer n-reader atomic register,
and n channels along which readers j may initiate reads of the value in the register.
Requests to initiate reads and writes of the register are acknowledged when the reads
and writes have completed; acknowledgements of read requests return the value v that
was read by the read.

* The second requirement states that no writer or reader should initiate a new write
or read until an acknowledgment of completion is received for the last write or read
initiated. Similarly, it implies that each write or read is acknowledged exactly once.
Note that the requirement that writers and readers wait for acknowledgements is beyond
the control of the register automata; we will expect that writers and readers comply
with this requirement and will not define the behavior of the register if they do not.

The final requirement above states that we should be able to linearly order the reads
and writes in a manner that is consistent both with the order in which the reads and

writes occured and with the behavior we expect of a register. We should thus be able to
think of overlapping writes and reads as having occured in some fixed order such that
each read returns the value written by the last write that preceeded it in the order.

4 The Architecture

We will implement such an m-writer n-reader atomic register as a composition of au-
* tomata as shown in figure 1.

In the figure 1, the circles represent distinct I/O automata, and the lines represent
channels between them. The heavy lines represent write channels, while the lighter lines
represent read channels.

" the paper.

ed.

'.6

-'.S, . .:, :--.-... . . -,...- -,- -.-. ,- -,: .., ..-. y . ,,-

Wrtr1Rgstr1Rae

Wrtr2Rgstr2Rae0

Wrte eite

0
iue :Tecmpsto atmtn

C~C%

%

C..-e

Each Writer i denotes an I/O automaton executing the algorithm's writer's pro-

- tocol. The actions Startw(i, v) and Finishw(i) are input and output actions of the
Writer i automaton. We will think of a particular write W of the value v to the m-writer

n-reader atomic register as the Startw(i, v) event that initiates W, the Finishw(i)
event that acknowledges completion of W, and all actions that the Writer i automa-
ton performs in between. For convenience, we will refer to the particular Startw(i, v)
event that initiates W as Start(W) and to the Finishw(i) event that terminates W as
Finish(W); the value v written by W will be refered to as Value(W).

Similarly, each Reader j denotes an I/O automaton executing the algorithm's reader's
protocol. The actions StartR(j) and FinishR(j, v) are input and output actions of the
Reader j automaton. We will think of a write R to the m-writer n-reader atomic regis-
ter in a manner analogous to that in which we think a write W to the register. We will
define Start(R) and Finish(R) analogously to Start(W) and Finish(W) above. The
value v returned by a read R will be refered to as Value(R).

Finally, each Register i represents a 1-writer, m+n-reader atomic register automa-
ton that has the external actions start,(v), finishw, start,(i), and finish,(i, v) which
are defined analogously to the Startw(i, v), Finishw(i), StartR(j), and FinishR(j, v)
actions of the m-writer n-reader atomic register. We will define reads r, writes w,

*, start(r), finish(r), start(w), and finish(w) for the 1-writer m+n-reader atomic reg-
isters analogously to the definitions we made above for the m-writer n-reader atomic
register. Also, for each read r and write w of a 1-writer m+n-reader atomic register
we will assume the existence of the actions atomic(r) and atomic(w) at which we can
think of r and w as having taken place.

By the wait-free condition that we require of our m-writer n-reader atomic register
we will mean that for any read R by any reader j in any fair execution of the automaton,

--.. the number of events performed by the Reader j between Start(R) and Finish(R) is

bounded by a fixed constant CR. Similarly, the number of events performed by any
Writer i automaton as part of any write in any fair execution must be bounded by
some fixed constant Cw.

5 Informal Description of the Algorithm

• 5.1 The 1-Writer Registers

So far we have established the composition automaton that executes the algorithm. We
will now present a bit of intuition to explain how the algorithm should work. Note
that this is not a proof of correctness. We will first discuss the "version numbers" that
are maintained by the writer automata in their associated 1-writer m+n-reader atomic
registers.

When a reader automaton receives a request to begin a read of the value in the m-
writer n-reader atomic register implemcnted by the composition automaton described

*% %

:: ' ba

W,

* earlier, it must somehow figure out which writer's register contains the value that is the
correct one to return. To aid in this process, each writer maintains a set of "version
numbers" which are visible to the readers and on the basis of which a current value may
be selected. The information maintained by each writer i in its register is as follows:

VN[i,j] Every time writer i performs a write that does not time out (We will discuss
what that means later.) to the m-writer n-reader atomic register, a new value
of VN[i,j] is written into writer i's register for every writer j. As such one may
think of VN as standing for the Version Number of the most recent write. The
rules for choosing the new VN[ij] will be discussed later.

PVN[i,j] Even though writer i changes its VN[ij] every time it performs a write
that does not time out, the old value of VN[ij] does not immediately disappear;

,- .- whenever the value of VN[i,j] changes, its old value is rewritten by writer i into
its register as the value PVN[i,j]. As such, PVN may be thought to stand for
Previous Version Number.

OVN[i,j] In the process of performing a write W, writer i reads the version numbers
* contained in the other writers' registers and writes them into its own register; the

value read for VN j, i] is written by writer i into its register as OVN[i,j]. It is
thus natural to think of OVN as standing for Other's Version Number. Since
they record some global state of the VN's that occured during the write W, these

..-. values serve as a sort of timestamp to communicate the relative recency of the
value, Value[i] in register i.

Value[i] At the same time that it writes the VN[ij], PVN[i,j], and O VN[i,j], writer i
also writes to its register the value, Value(W), that it is in the process of writing
to the m-writer n-reader atomic register. This value is written by writer i into its

,-": register as Value[i].

-. PreOVN[i,j] This value is used only by writers. It contains either the current value of
OVN[i,j], or a value of OVN[i,j] that writer i is planning to write but has not
yet written.

It is sometimes difficult to keep all of these different indexed variables straight; a
.0 partial aid to remembering them is provided by noting that the first index of a variable

is always the index of the writer in whose 1-writer m+n-reader register the variable
resides. The VN[ij] reside in the register of writer i and are thus written exclusively
by writer i; similarly for the other indexed variables.

Another important point to remember is that the first four variables, the VN[ij],
PVN[i, j], OVN[i, j], and Value(i], are written to writer i register at most once during
any write W b.- writer i. These variables are written all at once in a single write
to writer i's atomic register, and performing this write is the last step in the writers'
protocol before the Finish(W) action at the end of the protocol. Consequently, the

0

9

J'.

values of these variables remain constant between th#, &t;mic actions, atomic(w), of
such writes. The values of the PreOVN[i,j] change at other times.

These variables will initially be set to:

VN[i,j] = 2

OVN[ij] = PVN[i,j] = PreOVN[i,j]

for all writers i and j. The initial value that the m-writer n-reader atomic register is
to contain should be placed in Value[m); the initial values of Value[k) for k 7 m are of
no importance.

5.2 The Reader's Protocol

The importance of these variables to reads is that by examining the relative values
of the VN, PVN, and OVN, a reader automaton should be able to determine to a

large extent which writers wrote most recently. Consequently, a reader is capable of
determining which of the Value[il is the correct one to return. The following facts are

* useful in this respect:

1. If at some point OVN[i,j] = VNfj,i], then at that point, we will consider the
most recent write by writer i to be more recent than the most recent write by
writer j. This is so for the following reason: when writer i was selecting the
value of VN[j,i] to write as OVN[i,j] during its last write, it chose the value
VN[j, i] written by the most recent write by writer j; this implies that the most

*-. recent write by writer i was still deciding what to write after the point where the
most recent write by writer j had already written. Loosely speaking, we say that
writer i "sees" the version number VN[j, i] that was written by the most recent
write by writer j. This means that if writer i "sees" writer j's version number,
then the last write by writer i will be considered to be more recent than that of
writer j.

2. If writer i "sees" neither the VN nor the PVN of writer j, that is if OVN[i,j] j
VN[j,i] and OVN[i,j] 6 PVN[j,i] at some point, then as of that point, the

" . most recent write by writer i is considerably less recent than that by writer j.

This is so because writer j must have written at least twice since the most recent
write by writer i was selecting the value of VN[j, i] it would write as OVN[i,jI.

.-, This would imply that the value contained in Value[i] is particularly archaic; in
general, a read should avoid returning such a value.

i;A

* 3. At no point does any writer ever "see" its own version number; that is, at al.
points, OVN[i, i] 6 VN[i, i. At the same time, however, every writer alway
"sees" its own PVN; at all points OVN[i,i] = PVN[i,i].

0 10

#10

* .-. A % A n: .

Of these three facts, the first is by far the most important. Indeed, it captures the
essence of the purpose of the version numbers. It is on the basis of this fact that we
make the following informal definition. At a given point for a given writer i, we will

44 define VNS(i) to be:

VNS(i) = {ill < j < m, OVN[i,j] = VN[j, i]}.

It is an important fact about the VNS that for any point and any writers i and j,
either VNS(i) C VNS(j) or VNS(j) C VNS(i) at that point. (By A C B we will
mean that every element of A is also an element of B.) This means that at each point
there will be some writer k for which VNS(i) C VNS(k) for all writers i. The first fact
above implies that if VNS(i) is a proper subset of VNS(k) for some writer i, that is, if
writer i "sees" the version numbers of fewer writers than does writer k, then Value[k]
should be treated as being more recent than Value[i]. Since set inequality implies set
inclusion, we conclude that IVNS(i)I is a valid measure of the relative recency of the
last write of Value[i].

Unfortunately, IVNS(i)l is not an adequate measure of recency to determine uniquely
m. which writer wrote most recently and thus which writer's register contains the "current"

r.. value of the m-writer n-reader register. It is possible to have two separate writers i and
j, i 6 j, that write at more or less the same time resulting in VNS(i) = VNS(j) and

:, VNS(k) C VNS(i) for all writers k. Thus an additional measure of the recency of a
write is needed. To this end we will employ the second fact from above and define, for
a given point and a given writer i, the value N(i) at that point to be:

N(i) = 1 if for all writers j, OVN[i,j] E {VN[j,i],PVN[j,i]}
0 otherwise.

By the second fact from above, Value[i for a writer i for which N(i) = 1 should
j be considered to be more recent than Valuej] for a writer j for which N(j) = 0.

It would be quite desirable if the two measures of recency that we have just defined,
IVNS(i)I and N(i), did not contradict each other; that is, if IVNS(i) > IVNS(j) then
N(i) > N(2). We will prove that these two measures do not contradict each other; the
sum N(i) + IVNS(i)I thus serves as a better measure of recency than IVNS(i)I alone.

* Unfortunately, JVNS(i) + N(i) is still not an adequate measure of recency of
% Value(i] to uniquely determine the "current" value of the m-writer n-reader atomic reg-

- ister. It is again possible to have distinct writers i and j such that IVNS(i)I + N(i) =
IVNS(j) + N(j) and IVNS(k) + N(k) < IVNS(i) + N(i) for all writers k. Fortu-
nately JVNS(i) + N(i) is a strong enough measure of recency that we can make thefollowing definition, for a given point, of F at that point: if M is the maximum value of

IVNS(i)I + N(i) for any writer i, then let F be the largest numbered writer for which
"VNS(F)I + N(F) = M. It is clear that at any point, the value of F is unique. Our
proof of correctness will show that Value[F] may be viewed as the "current" value of
the m-writer n-reader atomic register.

:- 11

N N;- . 6

.

So far we have explained how one determines the "current" value of the m-writer
n-reader register based on the values of the VN, PVN, and OVN. What we have not
done is to state how a reader goes about reading a set of such values. If a reader were
simply to scan the writers' registers in succession, starting with a read of all the values
in writer l's atomic register and finishing with a read of the values in writer m's atomic
register, then if we were to compute F on the basis of the values observed, Value[F]

K. need not be a correct value to return. It is entirely possible that the writers could write
as the scan is taking place; such writes could write values of the VN, PVN, and OVN
that mislead a read into returning a value that is not at all current.

This is clearly undesirable behavior. So we ask if a reader would get a consistent
set of values if it were to scan the values of the writers' registers twice, starting with a
read of the values in writer l's register through a read of writer m's register followed
by another read of writer l's register and so on through a final read of the values in
writer rn's register. If we were to require that the values VN[i,j] observed by the first
scan be identical with the values VN[i,j) observed by the second scan for all writers i
and j, would the second scan yield a set of values from which we could determine F such
that Value[F] is a valid value to return? This is the approach adopted by the code in

N [PB]. This approach does not work; it is the basis for the first counterexample. Indeed,
even if one were to require that not only the VN's but the PVN's and the OVN's as
well remain constant across the two scans, then the second scan still does not return a
set of values for which Value[F] is necessarily a correct value to return. The algorithm
that we will prove correct incorporates a suggestion by Burns that a reader require that
all of the VN's, OVN's, and PVN's remain constant across three consecutive scans of
the writers' registers.

There is still one question about the way the read protocol determines the value of
F that remains unresolved. It is entirely possible that a reader could perform an infinite

-. sequence of scans and never see two consecutive scans that are identical. To solve this
problem, readers keep track of the writers whose values they have seen change between
scans. If, in the course of a read R, it is observed that a writer i has changed its values
two times, then because writes by a single writer are not permitted to overlap in time,
the write W2 that caused the second change of value must have started after the end of
the write W that caused the first change of value. Since changing the values visible to
readers is the last step in the writer's protocol. we conclude that essentially the entire
write IV2 was performed after the start of the read R but before the scan that observed

, .the second change in the values in writer i's register. This means that to return the
value, Value[i], written by the write W42 is to return a legitimate value for the read R;
the point at which we can think of the write W2 as having occured atomically will
necessarily be contained within the bounds of R so if we think of R as having occured
immediately after that point, we see that it is valid if Value(R) = Value(W2). If a
reader observes that a writer i has changed its value twice, then it will take this course
of action, returning the value of Value[i] observed after the second change; reads that
return a value determined in such a way are said to have "timed out."

0 12

r. %

4-' _

,0e

. i"

By the pigeonhole principle, it is necessary that after 2m + 3 consecutive scans of
the registers, either three consecutive scans have returned the same values for all of the

. writers, or some writer has been seen to change its values at least twice. Thus, by the
- time at most 2m + 3 scans have been completed as part of a read, that read has either

timed out, or has terminated normally having completed three consecutive scans that
retv.n the same values.

In summary, the algorithm's reader's protocol operates as follows:

1. A reader performing a read first scans the writers' registers attempting to make

.1* three consecutive scans that return the same values of VN[i,j] for all writers i
and j. By the end of at most 2m + 3 scans, either three such scans will have been
observed, or the read will have timed out returning a value written by a writer
whose values have been observed to change twice. If three consecutive scans return
the same values of the VN[i,j] then the values observed by the third scan are used
in the next step to determine the value to return.

2. On the basis of the values read in the first step, the values of IVNS(i)I, N(i),
* and F are computed. The value of Value[Fl seen during the third of the three

consecutive, identical scans from the first step is then returned.

This concludes our discussion of how readers choose the values they are to return.

5.3 The Writer's Protocol

We have discussed a reader's choice of a value to return based on the existence of several
".5- variables maintained by the writer automata. We have yet to demonstrate how these

variables are maintained. We will do so now.

Just as a reader must first read the values in all of the writers' registers to determine
what value to return, so too a writer must first read all of the writers' registers to
determine what to write. Writers read the VN, OVN, and PreOVN in a manner
almost identical with that in which readers read the VN, PVN, and OVN (although
the reason why the method works is somewhat different in the two cases). As before, a

* writer obtains values for the VN, OVN, and PreOVN by making scans of the writers'
registers. This time, if across three consecutive scans, none of the VN, PVN, or OVN
is seen to change, then the writer may assume that the values read by the last of the
three scans represent a state of the world on the basis of which the writer may complete
its write. It is very important to note that a writer does not require that the PreOVN
remain constant across scans; only the VN, PVN, and OVN must remain constant
across scans.

Assuming that a writer i has, as some point, successfully read the values of VN[j, k),
OVNj, kJ, and PreOVN[j, k], for all writers j and k, it chooses the values it will write
for the VN[i,j], PVN[i,j], and OVN[ij], for all writers j as follows:

13

e0o-e'

VN[i] Since we want to have OVNU,i] = VN[i j] only for writers j whose most

recent writes are more recent than the most recent write by writer i, we must
choose VN[i,j] $ OVN[j, i. Similarly, since PreOVNfj, i] is the value that an
ongoing write by writer j is planning to write for OVN[j, i], we want to choose
VN[i, j] # PreOVN[j, i]; otherwise we would imply falsely that the ongoing write
by writer j had chosen the value it is to write for OVNj, i] on the basis of the
value of VN[i,j] that we are choosing here but have not yet written. Finally, since
VN[i,j] is to serve as a "version number" for the current write by writer i, it must
be different from the value previously written for VN[ij]. We thus choose the
new value for VN[ij] to be an arbitrary element of the observed set:

{1,2,3, 4} \ {OVN[j, i], PreOVN[j, i], VN[ij]}.

PVN[ij] Since we want PVN[i,j] to be the value that was previously written for
VN[ij], we will choose PVN[i,j] to be the observed value for VN[i,j]:

PVN[i,j] := VN[i,j].

OVN~i,j] As was mentioned during the discussion of the version numbers, the values
of the OVN[i,j] are to represent the values of the VN[j,i] observed by writer i.

.. Consequently, we assign:
OVN[i,j] := VNj, i].

5q,'

5/._ After a writer i performing a write W has chosen the values it is to write for VN[i, j],

PVN[i,j], and OVN[i,j], it proceeds to write to its register, in one fell swoop, Value[i],
and VN[ij], PVN[i,j], and OVN[i,j] for all writers j.

The PreOVN[i,j] are written somewhat differently. As it is the purpose of the

:% PreOVN[i,j] to inform other writers of the value of OVN[i,j] that will be written,
but has not yet been written, it is vital that the PreOVN[i,j] be written as early as
possible. Thus the PreOVN[i,j] are written following the first scan of the writers'
registers and following each subsequent scan that returns values different from those
returned by the previous scan. Thus each time a scan returns a potentially new set of
VNU, iJ, we write the new values:

* PreOVN[i,j]: VNU, i]

for all writers j.

As was the case with the reader's protocol, a writer performing a write could perform
an infinite sequence of scans and never see three consecutive scans return the same val-
ues. The solution here is the same as with the reader's protocol. As a writer i performs
scans of the writers' registers, it keeps track of those writers that have been seen to
change values between scans. As before, if some writer is seen to change its values more
than once, the last write was performed within the time bounds of writer i's current

* 14

"p...

'%pk

-'C.%

write. The "atomic" action for writer i's current write may thus be placed immedi-
ately before that of the write that is performed within its Start and Finish bounds;
writer i simply termiuates its write without changing Value[i], VN[i,j], PVN[i,j], or
OVN[i,j]. A writer that terminates in this manner is said to have "timed out." Note
that since writer i does not change its values while it is scanning (The PreOVN[i,j]'s
are not compared across scans.), and three consecutive, identical scans are needed, the
pigeonhole principle dictates a ceiling on the number of scans that a writer need per-
form that is somewhat different from the corresponding ceiling for readers; after at most
2m + 1 scans, a writer has either seen three consecutive, identical scans or has timed
out.

Thus we can summarize the operation of the writer's protocol as follows:

1. A writer performing a write first repeatedly performs scans of the writers' registers.
After each scan (except the first), the values read for the VN, PVN, and OVN
are compared to those that were read by the previous scan; if any of these variables
is seen to change, note is made of the writer that performed the change.

* 2. After the first scan and after each subsequent scan that observes values different
from those of the scan that preceded it, the writer writes out its PreOVN[i,j]'s.

3. If after 2m + 1 scans, no three consecutive scans have been observed to have
the same values, the write times out by exiting without doing anything further.
Otherwise, the values returned by the third scan of a set of three consecutive,
identical scans are taken to be a consistent state of the VN, OVN, and PreOVN.

4.New vausare now chosen for the VN[ij], V ijanPNi]acodg
.d. .to the rules expressed earlier. After these values have been chosen, they, along

with the new value for Value[i] are written to writer i's atomic register in a single
write.

This completes the discussion of the writer's protocol.

6 Formal Description of the Algorithm

The code for the algorithm we will be proving correct is found in figures 2 and 3. This
is essentially a re-written version of the code given in (PBJ with the following changes of
significance: the number of consecutive, identical scans a reader makes is now three; all
of the VN's, PVN's, and OVN's are now compared between scans for both reads and

* writes; and writers read the PreOVN's when they read the other values in the writers'
registers. The first two of these were suggested by Burns as corrections to eliminate
the first counterexample. The third is a fix to eliminate the conditions that led to the
second counterexample.

15

Note that the code for the writer's protocol is specific to writer k; it makes use of
the variable k in the code so that it knows the register to which it may write. Readers,
on the other hand, all execute the same code. Note also that the only variables that are
shared among the protocols are the Value, VN, PVN, OVN, and PreOVN as these
are the only variables stored in the 1-writer m+n-reader atomic registers. All other
variables are local.

An additional note about the code is that all code within a given pair of C, symbols
is to be performed as a single read or write to a particular atomic register. Thus if a
loop is contained within the triangle symbols, the values to be written or read by the
loop are written or read all at once; the loop is only notation to quantify what gets
written or read.

The code for the reader's protocol works as follows. The first two lines initialize vari-
ables that are used for control purposes in the remainder of the code. The Same-Scans
variable records the number of identical scans that have been performed since the last
observed change between scans. The Timed-Out variable equals zero until such time
as some writer is observed to have twice changed the values in its register; it is set to
the number of a writer that performed two observed changes when such changes are
observed. The Changes-Seen array maintains the number of changes that each writer

. has been observed to perform.

Following these variable initializations is the code that performs the first scan of the
-'- writer's registers; the code designated by the xScan(R), label indicates the values that

are to be read from the each register i.

After this first section of code is a segment of code that is repeated at most 2m + 2
times. It performs the following steps:

'i U..

." 1. The values read by the previous scan are saved for future reference in the Save-Scan
arrays.

2. Another scan is performed; again, the lines of code indicating which values are
-'U read from register i are labeled zScan(R)j.

3. The values read by the scan from the last step are compared with those read by
the previous scan; any registers that are observed to have changed their values are
recored in the ChangesSeen array.

4. If any changes at all were observed between the last two scans, then a check is
made to see if any writer has now been observed to change its values twice, setting
Timed-Out appropriately if so. If, however, no changes were observed between
the last two scans, that fact is recorded by incrementing the running number of

* consecutive, identical scans that is stored in Same-Scans.

This sequence of steps is repeated until either three consecutive, identical scans are
observed to occur or some writer is observed to change twice.

* 416

%0

~ ? ~*~~!%~4~ P -W 42'.

-. 5 DEFINE
Writer-Changed.Sinc...Laa.Scan() E Vi (Scav%-VKNiJ 10v Saved Se nVNji.,j1))

'5v(V 1 5jsm (Sca-V~jJ iij 0 Sav~d..Sc.,s.PVN[., j)));

Any -Change -Since..L as$Scan a Vl:i~stm Wrsier.ChosdSi"s.L@*I.Sce'(i);

VNS-Sts.(s) a 1(1 :5j:5 mISc.,,.OVN(.,,j - Sc.R..VNri, 1)I

N(). a I i AI:5,scm(OV N4sJ j) GVNfj, il, PV NUel))

0 otherwise.C

Mua MAX (VNS.Size(i) + N(i)I :5 i !5 in);

F.a MAX (1 S i < mIVNS-Sasa(i) + N~i) w)

A BEGIN
Same..Scans U 0; Timed-Out :w 0;
FOR 1: TO in DO Chanuge..S.een(:- 0; END;

* FOR s :x I TO m DO
*FOR;: I 1TO mDO Scan-VNti,j1 - VNji,,j, ED;N ~~FORj :s1 TO i O Scaus.OV t,.J - ON J.,; END;

FOR): I TO m DO Sc'..PN[, - i J]I,,; END;
Scan-Vajwe(sj : Value(i]; -4

END;
%samO..Scans. w1
-~ REPEAT

FOR i I TO m DO
FORj =: I TO mn DO S~wed.c~n.VNji,j := Sesv%.VNji,jj; END;
FOR.? I TO on DO S.,dc,.OMi,-sans.OVN~i,A, END;
FOR : I TO inDO Sa..d.SernPVN~s~jJ U Scam..PVN(i,jj; END;

END;
FOR i: I TO m DO

*FOR 1 ITO on Do Scaa..VNji,jI U VN(i,jJ; END;
FOR, j; I TO fn DO ScaR..OVN(.i~J :, OVNjs.,j; END;
FOR~ U~ I TO mn DO Scan.PVNji,jj U PVN(i.,I; END;

END;
FOR iITO m DO

IF Writer.ChangeS.inc...Last.cu(i)
THEN Changes.Sesi. U Chanve.S.nil +. 1;
END;

END;
I IF Ansi..Chnge-Sjnc...Loet.Scen

THEN S..m..Seans U 1;
FOR i: 1 TO in DO

IF ChangesaSeen(s] = 2 THEN Tiesd-Out:U a; END;
END;

ELSE Sam*-Scans:,* Savne..Scan@ + 1;
END;

* tINTIL Sam...Scans - 3 OR TimeS.O,. 0 0;
IF Timed-.Out 1 0
THEN RETURN(Scon..Vale(Tined.Osti);
ELSE RETURN(Scan-Valwa(FI);
END;

END;

* Figure 2: The reader's protocol.

1~ 17

Im ... ,; &4K

DEFINE
Writer.Changed-Since-.Lase.Scon(s) a(V1:5<,(Scan-.VN,,) dig Saved.Sczn..VN(i,j))

v(V1 <<gvn Scan.O VN(,, j) of SaveL-ScanuOVN[i, jj))

v(VIs5j5(ScR.PVNIjiIj 0 Saved.Scan..PVNji,jj));

Any-Change-Sine-.Lost-Sean a (V,5< WritsrChned.Sine..Loae-Sc.(e));

BEGIN
Same..Sconsa 0; Timued-.Out is 0;
FOR.i: I TO in DO Changes-Seenjolo 0; END;
FOR o: I TO in DO

P FOR j ,-I TO in DO Sean..VNji,,1 : VN[s,j]; END;
FOR j I TO in DO Scan..OVN[s,)fl OVN~IOj; END;
FORJ j I TO mn DO Scan..PVN(.,j) PVN~i,j]; END;
PScan..PreOVN[i, ki = Pr*OVN~i, h);

END;
Same..Scane -r 1;
REPEAT

FOR i: I TO in DO
FOR, 1: TO in DO Sewed-Scon.VNji,jj :w Sean..VN[,j; END;
FOR j :a I TO in DO Saved.Scsr..OVNC.. jJ:= Scan..OVNfi.j; END;
FOR j:w 1 TO in DO Sawed.Seo~n.PVPjfs,jJ:- Scau..PVN~i,j; END;

* END;
IF Samn.Scan& or I
THEN & FOR i: I TO in DO Pr*OVPJh, ija Scan..VNv, k); END; 4
END;
FOR i .. 1 TO in DO

w FORj 1: 1 TO mn DO Scan..VN~i,,1 VNji,j]; END;
FOR, 1~ TO mDO Scan..OVN~i,,3:0 OVNIs,,1; END;
FOR~ :. 1 TO in DO Scan..PVN[,,jI :i PVN~s, ii; END;
PScan..Pr.OVN;, kj~i Pr*OVNS, h);
Scan..Volue.Isl Valtue(ij; A

END;
FOR i:. 1 TO mDO

IF Writer..Chan..d.Sinc.Lo..e-ca,,
4 ,)

a. THEN Chanpas-Ssn(i :v Change.Seal + 1;
END;

END;
./ ~*IF Any-Chang..Sinc...Lost-Scan

* THEN Sane-Scans: I ;
FOR i:- 1 TO in DO

IF Chang....Seonfil = 2 THEN Timed.Outu i ; END;
END;

ELSE Sane.Sean. := SaeeScans + 1;
END;

UNTIL Some-.Scans - 3 OR Timned-.Out ; 0;
IF Timed.Ogg 0
THEN RETURN;
ELSE

*FOR v:1ITO inDO
VNrk, 'i) Any({1, 2.3,4) \ Scan..VN[h. i], Scan..OVN~i, kJ, PScGU..Pr.OVN~i, kl));
OVNch,.J = Scan..VN[i,h;
PVN[k. a]:. Scan..VNk,,.;

* END;
a-Vol...(k] VALUE; 4

RETURN;
END;

END;

Figure 3: Writer k's protocol.

* 18

0-
a.i

The code for the reader's protocol concludes by returning the appropriate value
depending upon whether it is to time out or terminate normally.

The code for the writer's protocol begins very similarly to that for the reader's
protocol. It initializes the control variables and performs a first scan of the writers'

-registers in the same manner as the reader's protcol. It then enters a section of repeated
code that is similar to the repeated section of code with the following differences:

1 . Prior to performing a new scan, a check is made to see if the last scan performed
was the first scan or if it observed a change, that is, a check is made to see if
Same-Scans = 1. If so the values of the VN[i, k are written out as the new
PreOVN[k, i ; otherwise no action is taken. The line of code that performs this
write is labeled PWrite(W).

2. The code that indicates what values are to be read during each scan, indicated by
the xScan(W)i label, includes a line to read the PreOVN[i, k].

This section of code repeats at most 2m times, terminating when either three consec-
utive, identical scans have been observed, or when some writer has been observed to

" Prchange its values twice.

If, during the repeated segment of code, some writer was observed to change twice,
the writer's protocol now times out without doing anything further. Otherwise, the
appropriate new values are written to writer k's register by the lines of code designated
by the Write(W) label.

7 Proof of Correctness

7.1 Definitions

To make future reference more convenient, we will begin our proof of correctness with
a formal restatement of all of the definitions made in previous sections.

DEFINITION: Let W be any write of a value to the composition automaton and R
- be any read of the value in the composition automaton. Then Vaue(W) and Value(R)

refer tothe values written byWand read bys Rrespectively.

DEFINITION: Let W be any write by writer i. Then the following actions are
S. associated with W:

* Start(W) The request to writer i to begin the write W. This is the first action in the
write W.

Finish(W) Acknowledgement that the write W has just completed. This is the last
action i the write W.

19
0-
0. iihW cnwegmn httewieWhsjs opee.Ti stels

*"ato i te rteW

'O

V DEFINITION: Let W be any write by writer i that does not time out. Then in
addition to the above actions, the following actions are associated with W:

,Scan(W)j The atomic action associated with the read of writer j's register during the
first of the last three scans performed by writer i as part of W. Note that we are
actually defining the m separate actions:

1Scan(W)j < lScan(W)2 < ... < 1Scan(W),n.

PWrite(W) The atomic action associated with the last write of the PreOVN[i,j] by
-. writer i as part of W. Here we are defining only one action.

2Scan(W)j The atomic action associated with the read of writer j's register during the
second of the last three scans performed by writer i as part of W. Note again that
we are defining m separate actions.

Scan(W) A synonum for 2Scan(W)m. The significance of this action will be explained
U/b. later.

f- 3Scan(W)j The atomic action associated with the read of writer j's register during the
last scan performed by writer i as part of W. Note again that we are defining m
separate actions.

PScan(W) The atomic action associated with the last read of PreOVN[j, i] from
writer j's register performed by writer i as part of W. This is thus synonymous
with 3Scan(W)j.

Write(W) The atomic action associated with the write of Value(W) and new VN's,
OVN's, and PVN's to writer i's register as part of the write W.

Note then that for a write W by writer i that does not time out, the actions defined
above are synonymous with atomic actions of reads and writes performed by the anal-
ogously labeled lines of code in Figure 3. Consequently the actions of W defined above
occur in the following order:

Start(W) < 1Scan(W), < ... < lScan(W)m <
PWrite(W) <

* 2Scan(W), < ... < 2Scan(W),, = Scan(W) <
3Scan(W), = PScan(W)1 < ... < 3Scan(W)m = PScan(W), <

Write(W) < Finish(W)

DEFINITION: Let R be any read by reader i. Then the following actions are
associated with R:

Start(R) The request to reader i to begin the read R. This is the first action in the
read R.

20

A 5,."

ir .

Finish(R) Acknowledgement that the read R has just completed. This is the last
action in the read R.

DEFINITION: Let R be any read by reader i that does not time out. Then in
addition to the above actions, the following actions are associated with R:

1Scan(R)i The atomic action associated with the read of writer j's register during the
first of the last three scans performed by reader i as part of R. Note that we are
actually defining the m separate actions:

v. lScan(R), < lScan(R)2 < ... < lScan(R),.

2Scan(R)i The atomic action associated with the read of writer j's register during the
second of the last three scans performed by reader i as part of R. Note again that
we are defining m separate actions.

3Scan(R)j The atomic action associated with the read of writer j's register during the
last scan performed by reader i as part of R. Note again that we are defining m
separate actions.

Note that for a read R by reader i that does not time out, the actions defined above
occur in the following order:

Start(R) < lScan(R), < ... < lScan(R),n <

2Scan(R)1 < ... < 2Scan(R), <

3Scan(R), < ... < 3Scan(R),,n < Finish(R)

DEFINITION: Let s be any state in an execution of the composition automaton.
Let j and k be any writers. Then we will define VNU, k], to be the value of VN j, kJ
at state s. Similarly, PVNUj, kJ, OVN[j, k]., PreOVNj, k]., and Valuej], we define
to be the values of PVN, k], OVN[j, kj, PreOVNU, k], and ValueU] respectively at
the state 9.

DEFINITION: Let W be a write by writer i that does not time out. Let j and k be
writers. Define VNUj, kw, OVNU, k]w, and PVNU, k]w to be the values of VN[J, k],

0 OVNU, k], and PVN, k] respectively, observed by the last three scans of W. Thus if s,
t, and u are the states following IScan(W),, 2Scan(W)i, and 3Scan(W)j respectively,
then we have:

VN[j,k]w = VN[j, k], = VN[j, k] = VN[j,k]u

OVNj, k]w = OVNU, k]. = OVNJ, k], = OVN[j, k],
S. . PVNU, kJw = PVNUj, k]. = PVNU, kjt = PVNJ, kl,,

Define PreOVNU, k]w to be the value of PreOVNUj, k] observed by the write W. Thus
since u is the state following PScan(W)j, we have

PreOVNU,kw = PreOVNU,k .
0

21

0t °

DEFINITION: Let R be a read by reader i that does not time out. Let j and k be
writers. Define VNj, k]R, OVN[j, kR, and PVNj, k]R to be the values of VNj, k],
0VN [j, k], and PVN[j, k] respectively, observed by the last three scans of R. Thus if

s, t, and u are the states following lScan(R)j, 2Scan(R)i, and 3Scan(R)j respectively,
then we have:

VNj, k]R = VN[j, k], = VN[j, k~t = VN[j, k],

OVNj, k]R = OVNj, k], = OVN[j, klt = OVNj, k],

PVNj, k]R = PVN[j, k], = PVN[j, k]t = PVNi, k]u

The following lemma embodies the rules by which the VN[i, j], OVN[i, j], PVN[i, j],
and PreOVN[i,j] are picked each time a writer writes.

Lemma 1 Let W be a write that does not time out and let i be the writer that performed
the write W. Let j be any writer. Let s, t, u, and v be the states following PScan(W)j,
3Scan(W)j, 3Scan(W)i, and Write(W) respectively (note s = t). Then the following
hold:

VN[i, j), 0 {VN[i, j]u, OVN[j, it, PreOVNj, i].}

* OVN[i,j], = VNj, i]t

PVN[i,j], = VN[i,j],.

Also, let x be the state following PWrite(W). Then

PreOVNti,j], = VNf,i]w = VNj,i]t.

andProof of Lemma 1: This follows directly from the definitions of the PScan, 3Scan,

and Write actions and from trivial examination of the code. 0

Note that VN[i,j]v i VN[i,j, implies that a writer changes all of its VN's every
time that it performs a write that does not time out.

DEFINITION: Let i be a writer and let s be a state in an execution of the
composition automaton. Then we will define:

VNS(i). {jil < j < m, OVN[i,j] = VNUj,i]}.

Let i be a writer and let R be any read that does not time out. We will define:

VNS(i)R = { i j < m,OVN[i,j]R = VN[j,i]R}.

DEFINITION: Let i be a writer and let s be a state in an execution of the
composition automaton. Then we will define:

".(f if for all writers j, OVN[i,j], E {VN[j,i],PVN[j,i].}
NO), 0 otherwise.

22

".

- .- %o

Let i be a writer and let R be any read that does not time out. We will define:

N(i)R = 1 if for all writers j, OVN[i,j]R E {VN[j,i]R,PVN[j,i]R}
T0 otherwise.

DEFINITION: Let s be a state in an execution of the composition automaton.
Then we will define:

r..- F(s) = MAX{ill < i < m, IVNS(i).i + N(i). = MAXi<jm(IVNS(j)oi + N(j).)}.

Let R be any read that does not time out. We will define:

F(R) = MAX {ill < i < m, IVNS(i)RI + N(i)R = MAXl<j<m(IVNS(j)R + N(j)R)}.

Recall that the value of F(s) may be thought of as the writer whose 1-writer n + m-
reader register contains the current value for the m-writer n-reader register.

* 7.2 Basic Facts

Most of the following theorems, lemmas, corollaries, and such are useful in understand-
ing how writers, writing according to the writer's protocol, are able to write in such a
way that F(s) may always be taken to be the "current" value of the m-writer n-reader
atomic register.

The following lemma establishes a little fact that will be used throughout the re-
mainder of this paper.

Lemma 2 For all writers i and all states a in an ezecution of the composition automa-
ton, i % VNS(i),.

Proof of Lemma 2: Let i be any writer and s be any state in an execution of the
composition automaton. Let Wi be the last write by writer i such that Write(Wi) < s.3

Let t and u be the states following 3Scan(W)j and Write(W) respectively. Then by
* Lemma 1 we have VN[i,i] 0 VN[i,i]t = OVN[i,i],,. By choice of Wi, the values of

VN[i, i] and OVN[i, i] in writer i's register remain constant between u and s and thus
VN[i,i], = VN[i,i],, and OVN[i,i], = OVN[i,i],,. Thus VN[i,i]. ? OVN[i,i, and
by definition of VNS(i), we have i 0 VNS(i), as desired.

3 Here and elsewhere the author assumes that such a write always exists. This is incorrect; the
* problem of initialization will be handled correctly in a later version of the paper.

ed.

3% 2

.N

Z::C S :

...' . ,,"

o %~

All of the actions we have just described refer to particular, meaningful operations
performed during an execution of the read or write protocols, with one exception. In
particular, Scan(W) for a write W that does not time out was defined to be syn-
onymous with 2Scan(W), but it has had no meaning assigned tc it. We will give it
meaning by showing that the values of the VN's, OVN's, and PVN's observed by
the last three scans of W are identical to those in the writers' registers in the state
following Scan(W); if u is the state following Scan(W) then VN , k] = VN j, k]w,
OVN[j, k], = OVNj, k]w, and PVNj, k]. = PVN[j, k]w for all writers j and k. Thus
the values seen by the last three scans made during the write W may be thought to have
been read by a scan performed atomically at the point Scan(W). This is demonstrated
by the following Lemmas and Corollary.

Lemma 3 Let i and j be any writers. Let s and t be any two states, s < t, in an
execution of the composition automaton. If VN(S, j], = VN[iJ]t and there exists some
write W by writer i such that a < Write(W) < t then there exists at least one write W
by writer i such that

9 < Scan(WI) < Write(Wi) < t.

If i = j then there exist at least two writes W1 and W2 by writer i such that

s < Scan(WI) < Write(Wi) < Scan(W2) < Write(W2) < t.

Proof of Lemma 3: Let W0 be the first write by writer i such that s < Write(Wo) <
t. Let u be the state following Write(Wo). Then by the way the VN's and PVN's are
chosen (ie. Lemma 1), we have

VN[i,j)u $4 PVN[i,ju = VN[i,j],.

Now since VNi,j]t = VN[i,j] there must be another write by writer i between u and
-, : t to bring the value of VN[i,j] back to what it was at s. Let W1 be the first such write.

Since W1 must start after W0 finished, we have s < u < Scan(W1) < Write(W) < t
and W1 is as desired.

In the event that i = j, we have additionally, by Lemma 1, that OVN[i, i]u =
VN[i, i]. Thus if v is the state following Write(W), by the way VN's are chosen we
have:

* VN[i, i] $ OVN[i, iu = VN[i, ii..

C. Again, sinres V V4, il: = VN[i, i],, there must be yet another write by writer i between
-: v and t to bring the value of VN[i,i] back to what it was at s. Let W2 be the first

such write. Again, since W2 must start after W, finished, we have a < Scan(W1) <
Write(W) < v < Scan(W2) < Write(W2) < t, and W, and W2 are as desired. 0

Lemma 4 Let W be any write by a writer i such that W does not time out. Then
there does not exist a writer j and a write W by writer j such that 2Scan(W), <
Write(W,) < 3Scan(W)j.

* 24

X"-

6

, * % -,*,yb.*

Proof of Lemma 4: Assume otherwise and let j be a writer for which there exists
a write Wi such that 2Scan(W), < Write(Wj) < 3Scan(W)i. Let a and t be the states*following 2Scan(W)i and 3Scan(W)j respectively. Then since the last three scans of-- . W saw the same values in the registers, we have VN[j, kiw = VNUJ, k]. = VN[j, kt
for all writers k implying that VN U, i], = VN j, it. Now we have assumed that there
is a write Wj by writer j for which a < Write(Wj) < t, so by Lemma 3, there exists
some write W? by writer j such that s < Scan(Wj) < Write(Wj) < t; let W be the
last such write. If v is the state following Write(W), then by choice of Wj, VN[J,i)
remains constant between v and t implying VNU, i]v = VNj, i]t. Let x be the state
following PScan(Wj) and note that

PWrite(W) < 2Scan(W)j < Scan(W) < z < Write(W) < 3Scan(W)j.

Then since PreOVN[i,j] remains constant between PWrite(W) and 3Scan(W)j, by
Lemma 1 we have PreOVN[i,j], = VNUj, i]w = VN[j, i]t. Also, by Lemma 1 we have
VN[j,i],, $ PreOVN[i,j],. But this implies VN j,iv 96 PreOVN[i,j- = VN[j,i]t
contradicting the VN[j,i],, = VN[j, i] we saw above. Thus our assumption is incorrect
and the Lemma is proved. 0

Corollary 5 Let W be any write by writer j such that W does not time out. Let u be the
state following Scan(W). Then VNU, k]. = VNfJ, kJw, OVNUj, k). = OVN[j, kjw,
and PVN U, k] u = PVN[j, k]w for all writers j and k.

Proof of Corollary 5: By Lemma 4, there are no writes to writer j's register that
could change the values of VN[j, k], OVN[j, k], and PVN[j, k] between 2Scan(W)j and
3Scan(W)i for any writer k. Thus if . and t are the states following 2Scan(W)j and

.1; 3Scan(w)j respectively, we have . < u < t implying:

VN ,k]. = VNUJ,kJ = v/vU,?c, VNj , k]w

OVNfj, k], = OVNUk). = OVNfj, k] = OVNI, k]w
PVNj, k], = PVN[j,kju = PVN[j, kt = PVN, kw

for all writers k as desired. 13
0 This result permits us to think of the values of the VN's, OVN's, and PVN's

observed by a write W, those values on the basis of which W chooses the VN's, OVN's,
and PVN's that it writes, to have been read by an atomic scan of all the writers' registers
acting at the point Scan(W). This meaning of the Scan(W) action is fundamental to
the remainder of the proof.

.- Now that we have established the meaning of the Scan(W) action, we will present
two theorems that capture the essence of the relative meanings of the VN's, OVN's,
and PVN's. The first of these theorems states that for given writers i and j, if writer i
"sees" writer j's version number at a given point, that is, if OVN[i,j] = VN[j, i] at that

*1- point, then writer i has both scanned and written since the last write by writer j. The

25

%0

second theorem states that for given writers i and j, if writer i sees neither writer j's VN
nor writer j's PVN at a given point, if OVN[i,j] # VNj,i] and OVN[i,j] A PVN, il
at that point, then writer j completed two writes between the scan and write actions
of the most recent write completed by writer i. Let us first prove a little lemma.

N"

Lemma 6 Let a be any state in an execution of the composition automaton. Let i be
any writer and let Wi be the last write by writer i for which Write(Wi) < a. Let j be
any writer for which there exists a write Wj such that Scan(Wi) < Write(Wj) < s. Let

t be the state following Write(Wj). Then OVN[i,j], A VNfj, i]t.

Proof of Lemma 6: Let j, Wi, and t be as in the lemma statement. Let u and
v be the states following Scan(Wi) and PScan(Wj)i respectively. Then there are four
cases we must consider:

Case 1: v < Scan(Wi). Then since we have u < PScan(Wj)i < v, u < Scan(Wi) <
d Write(W). Since writer j is in the process of performing the write W between

u and Write(Wj), ie. since Start(Wj) < u < Write(Wi) < Finish(Wi), there
* are no other writes W by writer j for which u < Write(W) < Write(Wi) and

consequently VNU,i],, is constant for all a', u < s' < Write(Wj). In particular,
if x is the state following Scan(W) then:

VN[j, i4, = VN[j, i],,.

Let y be the state following Write(Wi). Then by Lemma 1 we have:

OVN[i,j], = VNj, i]

and
VN[j, i)t $ VN[j,i],.

By choice of Wi and hence of y, OVN[i,j] remains constant between y and a.
Consequently:

OVN[i,j], = OVN[i,j]y.

Putting the above equations together yields:

0 OVN[i,j], = OVN[i,j]y - VNU,i]4 = VNj,i]u VN[j,i]t

as desired.

Case 2: Scan(Wi) < v < Write(W). Now PreOVN[i,j] remains constant between
" PWrite(Wi) and Write(Wi) and by Lemma 1 equals OVN[i,j], if y is the state

following Write(W,). Since PWrite(Wj) < Scan(W) < v < Write(W) we thus
have:

PreOVN[ij], = OVN[i,j],.

0

• -26

%.

By Lemma 1, we have:

VN j, ilt # PreOVN(i,j],.

By choice of Wi and thus of y, 0 VN[i,j] remains constant between y and a. Thus:

OVN[i,j. = OVN[Sjj,.

Putting the above equations together yields:

OVN[i, j]. = OVN[i, jly = PreOVN[i, j]. # VN j, i]j

" "as desired.

Case 3: Write(W) < v but u < Write(Wi). This implies

2Scan(Wi)i < u < Write(Wi) < PScan(Wj)i = 3Scan(Wj)i.

By Lemma 4 this is impossible.

Case 4: Write(W) < v and Write(Wi) < u. Note that u < v < Write(W) < s. Now
- by choice of Wi, OVN[i,j] equals the constant OVN[i,j]. between Write(Wi)

and a. In particular:
OVN[i,j],, = OVN[i,j]..

Now by Lemma 1:
VN[j, i], # OVN[i,j],.

Putting these equations together yields:

OVN[i,j]. = OVN[i,j]u 6 VN[j, ilt

as desired.

This completes proof of Lemma 6. 3

Theorem 7 Let i and j be writers, i 6 j. Let a be any state in an execution of the
composition automaton. Let W and Wi be the most recent writes by writers i and j for
which Write(W) <S and Write(Wi) < .. Then OVN[i,jj. = VN ', if and only if

Write(Wj) < Scan(W).

Proof of Theorem 7: Let us first show that:

OVN[i,j], = VNji]. =* Write(Wj) < Scan(Wi).

Assume otherwise, that OVN[i,j]. = VN j,i]. but that Scan(W) < Write(Wj). Let
v be the state following Write(Wj). Then by choice of Wi we have Scan(W) <
Write(Wj) < s implying by Lemma 6 that:

OVN[i,j], $ VNj , iV.

27

0 -22

' * * I
"

q
¢

.9
°

A * '* % ~ N ,

Since by choice, Wi is the last write by writer j such that Write(Wj) < a, the value of
VN(j, i] remains constant between v and a implying that:

VN , i],, = V N[j, i..

Putting these together yields

OVN(j, i]. 4 VN[j, i], = VN[j, 4].
which contradicts our initial assumption that OVN[i,j]. = VN[j,i].. Thus the first
direction of the theorem is proved.

Now, let us show that:

Write(Wi) < Scan(W) == 0 VN[i,j]. = VN[j, i]..

Assume Write(Wi) < Scan(Wi). Since W is the last write by writer j such that
Write(W) < s, VN[j, i],, = VN U, i]. for all states s' such that Write(Wi) < s' < .. In
particular, if t is the state following Scan(Wi), then since by assumption Write(W)) <"".""Sean(Wi) < .9, we have Write(W) < t < .9 implying VNLj,i]t = VNLj,i].. By

Lemma 1, OVN[i,j], = VNj,i]t and thus OVN[i,j], = VN[j,i], as desired. This
concludes the proof of Theorem 7. 0

Theorem 8 Let i be any writer and s be any state in an execution of the composition
automaton. Let Wi be the last write by writer i such that Write(Wi) < S. Then
N(i), = 0 if and only if there is a writer j $ i that performed writes Wj and Wj,
W $ W such that

,% .Scan(Wi) < Write(Wj) < Write(Wj) < s.

Proof of Theorem 8: Assume there exist two writes W and W by writer j such
that Scan(W) < Write(Wj) < Write(Wi) < s; let W' and Wj be the last such writes.
Let t and u be the states following Write(Wj) and Write(W) respectively. Then by
Lemma 6 we have:

OVN[i,j], $ VN[j, i],

and
* OVN[i,j]. 4 VN[j, i],.

By choice, W is the last write by writer j such that Write(Wj) < Write(Wj), thus if
v is the state following Scan(W,), we have VNU, i],, = VN[j, i]1t. By Lemma 1 we have
PVN[j, i] = VN[, i] ,, thus:

* PVN , i], = VN[j, i].

Now by choice, Wj is the last write by writer j such that Write(Wj) < s, thus:

VN[j, i]8 = VNU, i]

0 28

#.1 '

I

and
PVNUj, iJ = PVNU, i],,.

Putting the above equations together we get:

OVN[i,j]. $ VN[, i]. = VN[, i].

and
Coan uOVN[i, j]. # VNj, i], = PVNU, i], = PVNj, i]..

Consequentl, N(i). z- 0. Thius if j, WJ, and Wj exist as in the theorem statement,
then N(i). = 0.

Now for the other direction. Assume N(i), = 0. This means PVNj, i], # OVN[i,j],
and VNU, i], 6 0 VN[i,j]. for some writer j. We have three cases:

1. There are no writes Wi by writer j for which Scan(W) < Write(Wi) < .. Let t
be the state following Scan(Wj. Then VNj, i] remains constant between t and
a implying VNj ,i, = VNj, it. By Lemma 1, VN[, i]t = OVN[i,j), and we

* have:
Thsti.as.sntVN j, i]. = VNUj, i]t = O VN[i, j]..

Thus this case is not possible.

2. There is exactly one write Wi by writer j for which Scan(Wi) < Write(W) < s.
Let t and x be the states following Scan(Wi) and Write(Wj) respectively. Then

PVNj,i]. = PVNU, i] = VNj,i]t = OVN[i,j]..

Thus this case is not possible.

3. There are at least two writes Wi by writer j for which Scan(Wi) < Write(Wi) < s.
This implies the existence of Wi and Ws as required by the theorem statement.

Thus N(i) = 0 implies there exists a writer j and writes Wj and W by writer j

such that Scan(Wi) < Write(W) < Write(W) <s. This completes the proof of the
theorem. 1

We will now apply the two theorems that we have just proved to prove several useful
and interesting facts about some of the various constructs, such as VNS(i),, N(i),, and
F(s), that we defined earlier. The first of these facts, expressed in the following Lemma,
shows that for any state . and any writers i and j, if VNS(i). 9 VNS(j), then one of
VNS(i). and VNS(j). is a proper subset of the other.

Lemma 9 Let i and j be writers and s be a state in an execution of the composition
automaton. If VNS(i), 0 VNS(j). then VNS(j), C VNS(i),.

29

'.A 29
0!'

* N.* '

. , % % - - . % % % -, - ,. ' ''" " . " °. % ", .% % -, .% , , ,

01

Proof of Lemma 9: Given VNS(i). . VNS(j),, let k be such that k E VNS(i).\
VNS(j).. Let Wi, W i and Wk be the last writes by writers i, j, and k respectively
for which Write(Wi) < s, Write(Wi) < s, and Write(Wk) < s. Since k E VNS(i),
VN[k, i, = OVN[i, k], which by Theorem 7 implies Write(W) < Scan(W). Also,
since k V VNS(j)., VN[k,j]. 0 0 VNU, k]. implying by Theorem 7 that Scan(Wi) <
Write(Wk). This implies Scan(Wi) < Scan(Wi). Now by symmetry, of the above
argument, VNS(j), . VNS(i), would imply Scan(Wi) < Scan(Wi). Thus we may
conclude that VNS(j), C VNS(i), and the lemma is proved. 0

Corollary 10 Let i and j be writers and s be a state in an execution of the composition
automaton. Then:

1. VNS(j)o is a proper subset of VNS(i). if and only if IVNS(j).I < IVNS(i).I.

-. 2. VNS(j), = VNS(i). if and only if IVNS(j).I = IVNS(i).I.

Proof of Corollary 10: This follows directly from Lemma 9 and elementary set
theory. 0

, The following lemma presents another important fact. It is important because it and
the corollary that follows it relate the two principal values that are used for determining
the value of F(s) at a state s, namely the IVNS(i).I and the N(i),.

- Lemma 11 Let i andj be any writers, i y j, and let s be any state in an execution of
the composition automaton. Then:

" " IVNS(i)°l > IVNS(j)°l :=* N(i)o >: N(j)°.

Proof of Lemma 11: Assume otherwise, that IVNS(i)j > IVNS(j).I but N(i), <
N(j)s. By Corollary 10, VNS(j), is a proper subset of VNS(i)° implying that there is
some k E VNS(i). \ VNS(j).. By definition of the VNS this means that VN[k, i]. =
OVN[i, k18 but VN[k,j], $ OVNU, k].. Let W, Wj, and Wk be the last writes by writ-
ers i, j, and k respectively for which Write(W,) < s, Write(W) < s, and Write(Wk) <
a. Then by Theorem 7 we have Scan(W) < Write(Wk) but Write(Wk) < Scan(Wi)
and thus Scan(W,) < Scan(W). Now N(i). < N(j), implies N(i). = 0 and N(j). = 1.
By Theorem 8, N(i). = 0 implies that there exists some writer I and two writes W1 and

.'.W such that:

Scan(W) < Write(W) < Write(WI) < s.

But Scan(W.) < Scan(Wi) implies that:

Scan(W) < Write(W() < Write(W1) < s.

By Theorem 8 again, we have N(j), = 0 contradicting the above. Thus our assumption
is incorrect and the lemma is proved. 0

* 30

03

. ..

Corollary 12 Let i and j be any writers i $ j, and let a be any state in an execution
of the composition automaton. Then:

1. IVNS(i)ol > IVNS(j).I =* IVNS(i). + N(i). > IVNS(j).I + N(j),

2. IVNS(i),I + N(i). > IVNS(j).I + N(j), = IVNS(i),I > IVNS(j),

3. IVNS(i).I + N(i), > IVNS(j). + N(j)o = N(i), > N(j),

4. jVNS(i),I + N(i), = IVNS(j).l + N(j)° = IVNS(i)°I = IVNS(j)ol

5. IVNS(i)l + N(i), = IVNS(j),I + N(j), = N(i), = N(j)°

; Proof of Corollary 12: All parts follow directly from Lemma 11. 0

Corollary 13 Let s be any state in an ezecution of the composition automaton. Then:

VNS(i). C VNS(F(s)).

for all writers i.

Proof of Corollary 13: Assume otherwise. Then for some i # F(s),

VNS(i). \ VNS(F(s)). # 0.

Then by Lemma 9, VNS(F(s)). is a proper subset of VNS(i).. Then

IVNS(F(s))°I < IVNS(i).I

implying by Corollary 12 that

IVNS(F(s)).l + N(F(s)). < IVNS(i).l + N(i).

contradicting the definition of F(s). Thus our assumption is incorrect and the corolary
holds. 0

The following lemma and corollary demonstrate that at each step s, the function N
takes on a non-zero value for at least one writer, and in particular, N(F(s)), = 1.

Lemma 14 Let s be any state in an execution of the composition register. Then there
exists some writer i for which N(i), = 1.

Proof of Lemma 14: Of all the writes W, by any writer, for which Write(W) < 8,
let Wi be the one for which Scan(W) most recently precedes a. Let i be the writer that

31

0%

-. ,..':

performed the write Wi. Assume N(i), = 0. Then by Theorem 8 there exists a writer j

and writes Wi and W by writer j for which

Scan(W,) < Write(W) < Write(W,) < s.

But W must have begun after W finished implying

1'Write(W;) < Sean(W,) < Write(Wj).

Consequently,
'. . Scan(W) < Scan(Wi) < Write(Wi) < a

contradicting our choice of Wi. Thus our assumption is incorrect and N(i), = 1 proving

the lemma. 0

', Corollary 15 Let s be any state in an execution of the composition register. Then we
*' have N(F(s)). = 1.

Proof of Corollary 15: Let i be some writer such that N(i), = 1; such a writer
exists by Lemma 14. If i = F(s) then we're done. Otherwise we have three cases:

1. IVNS(F(s)).[+ N(F(s)). > IVNS(i).i + N(i)8 . By Corollary 12, N(F(s))° _
2. N(i). = 1 and we're done.

2. VNS(F(s)),I + N(F(s)). = IVNS(i).I + N(i).. By Corollary 12, N(F(s)), =

N(i) = 1 and we're done.

3. iVNS(F(s))°i + N(F(s)). < IVNS(i).j + N(i)o. This case cannot occur as it
would contradict the definition of F(s).

This completes the proof of the corollary. 0

7.3 Placement of Writes

4-4 We will now use the facts we have established to prove two theorems that axe the basis

for the placement of atomic write points in an execution of the composition automaton.
0" First, however, we will need the following definition.

DEFINITION: Let W be a write by writer i that does not time out. Let s be the

state following Write(W). We will call the write W potent if F(s) = i. We will call the
4. .write W impotent if F(s) 9 i.

* The first of the two theorems we will now prove states that if W is an impotent

write, then F has the same values for the states immediately preceding and following
. Write(W). Intuitively, this is very desirable behavior. If a writer writes a new value

V to its register, one would expect that in doing so, it would either change the value

32

e--

4. .,- m u' ,, . ,. , " "
" _

7 ,e ,. g '.. 'm i D im m ln , -

of the composition register to V, or it would leave the value in the composition regis-
ter unchanged. It would be highly undesirable if writes could cause a value that had
previously been current, but had since been overwritten, to become current again.

The second of the two theorems that we are about to prove states that if W is any
V. impotent write, then there is some potent write W' such that W' wrote its value and
-new VN, OVN, and PVN numbers between the scan and write actions of W. This,

again, is what one would expect. A writer performing its scan and write operations
during an interval in which no other writes are occuring should change the value of the
composition register to that of its own register when it completes its write. These two
theorems provide us with points at which to insert an "atomic" action for both potent
and impotent writes.

Using these two theorems, we can then proceed to insert the Atomic(W) actions for
writes W as follows:

1. If W is potent then insert Atomic(W) immediately preceding Write(W).

2. If W is impotent then insert Atomic(W) immediately preceding Atomic(W') for
the last potent write W' such that Scan(W) < Atomic(W') < Write(W). We
will show that such a write always exists.

3. If W times out then insert Atomic(W) immediately preceding Atomic(W") for
some write W" such that W' is performed entirely within the interval during
which W is performed.

We will show later why these insertions satisfy the conditions we desire of them.

Theorem 16 Let W be an impotent write written by writer i. Let s' and s be the states
A preceding and following Write(W) respectively. Then F(s') = F(s).

Proof of Theorem 16: We will first prove a few propositions that will be usefulin the proof of the theorem. In all of these propositions, we will assume W, i, s', and s

are as above. Note that i $ F(s) since W is impotent.

Proposition 16.1 i E VNS(F(s)).,.

Proof of Proposition 16.1: Assume otherwise. Then

* OVN[F(s), i]., $ VN[i, F(s)].,

implying by Theorem 7 that if WF(.) is the last write by writer F(s) for which we have
N' Write(WF(,)) < s' then there is some write W' by writer i such that

9.', Scan(WF(.)) < Write(W') < s'.
0

33

.
2-A

-0 ,, " , -. " ' '.. . ~ ~ m~ m ~ mw m((m m m m mm m

Then since WF(a) is also the last write by writer F(s) for which Write(WF(.)) < s and

Scan(WF(5)) < Write(W) < s' < W4rite(W) < s

Theorem 8 tells us that N(F(s)), = 0 contradicting Corollary 15. Thus the proposition
holds. 0

Proposition 16.2 F(s') j$ i.

Proof of Proposition 16.2: By Corollary 13 we know that VNS(F(s)).: c
VNS(F(s')),1 and by the above, i E VNS(F()), 1 thus i E VNS(F(')) 1 . Now by
Lemma 2 we know i VNS(i).'. We conclude F(s') 5$ i. 0

Proposition 16.3 For all writers j, j $6 i, VNS(j), = VNS(j)ai \ {i}.

Proof of Proposition 16.3: Let j be a writer, j 0 i. Since there are no writes
Wk by any writer k 54 i such that s' < Write(Wk) < s, we know that VN~k,j],
OVN[j,k]. if and only if VN[k,j].i = OVN[j,k]., for all writers k, k $ i. Thus we

0 have k E VNS(j), if and only if k E VNS(j), 1 for k $6 i.
If we had i E VNS(j), then by Theorem 7 we would have s' < Write(W) <

Scan(W%) < s where W3 is the last write by writer j for which Write(Wj) < s; this
would clearly contradict our choice of s' and a which are chosen such that Write(W) is
the only action between them. Therefore, i VNS(j) 9 .

Thus we have k E VNS(j). if and only if k E VNS(j) 1 for k $4 i, and i VNS(j)8 .
By elementary set theory, we conclude VNS(j). = VNS(j) 1 \ i}. Since j is an
arbitrary writer, our proof of the Proposition 16.3 is complete. 0

Proposition 16.4

IVNS(F(s))ai = jVNS(F(s')),,l - 1 and IVNS(F(s)),l IVNS(F()),1 J - 1.

Proof of Proposition 16.4: As was noted in the proof of Proposition 16.2, i E
V NS(F(s)),, and i E VNS(F(s)) 5 . By Proposition 16.2, F(s') j$ i, and F(s)$
i because W is impotent. The proposition thus follows from Proposition 16.3 and

- . elementary set theory. 0

Proposition 16.5 Letji be any writer for which i E VNS(j), 1 . Then N(j), N(j).,

Proof of Proposition 16.5: By definition, i E V'NS(j), 1 implies VN[i,j,,5 =
- QOVNUj,],1 . By Lemma 1 we have PVN[i.j], = VN[I,jJ8. and thus PVN[i,j), =

VN~i,j 3 , = OVN~j,il,, = OVN[j,i 9 . Thus PVN[ij 3 OVN[j,i 3 . By definition,
*N(j), 0 if and only if there exists some writer k such that VN[k,j 8 OVN[j,k].,

34

6Z

[rrr, wt. r u = r rtN. ar, nra ,r. -a • "-

and PVN[k,j], 0 OVNj,k],. Since PVN[i,j]. = OVN[j,i],, there exists such a k
if and only if there exists such a k, k 0 i. Since j 0 i, OVNU, 11., = OVNU, 1], for
all 1, 1 6 i; also, VN[l,j]., = VN[I,j]. and PVN[I,j],, = PVN[I,j], for all 1, 1 0 i.
This implies that there exists such a k i i if and only if VN[k,j]., # OVN U, k], and
PVN[k,j],, 6 OVNj,k].,. But by definition, N(j)8, = 0 if and only if either such
a k j i exvsts or if VN[i,j]., # OVNj,i],, and PVN[i,j]., # OVNj,i],. We have
seen that VN[i,j],, = OVN[j,i]., and we thus conclude that N(j), = 0 if and only if
N(j),, = 0. Since N takes on only the values 1 and 0, our proof is complete. 0

Proposition 16.6 N(F(s)). = N(F(s))., and N(F(s'))o = g(F(s))o,.

Proof of Proposition 16.6: As was noted in the proof of Proposition 16.2,
i E VNS(F(s)),, and i E VNS(F(s')).,. The proposition follows immediately from
Proposition 16.5. 0

We now proceed with the proof of Theorem 16. Assume that F(s') $ F(s); we will
derive a contradiction. Now by definition of F(s'), one of two cases must occur:i

1. IVNS(F(s'))o,I + N(F(s'))., > IVNS(F(s))., + N(F(s)),. Then by Proposi-
tions 16.4 and 16.6,

IVNS(F(s')).l + N(F(s')). = IVNS(F(s')),[+ N(F(s'))., - 1

> IVNS(F(s)),,I + N(F(s)),, - 1 =
IVNS(F(s)).l + N(F(s)).

Thus IVNS(F(s'))ol + N(F(s'))o > IVNS(F(s)).I + N(F(s)). contradicting the
definition of F(s).

2. IVNS(F(s')), + N(F(s')), = IVNS(F(s)),,j + N(F(s))., and F(s') > F(s).
Then by Propositions 16.4 and 16.6,

IVNS(F(s'))oI + N(F(s'))o = IVNS(F(s'))oI + N(F(s'))o, - 1
= IVNS(F(s)),I + N(F(s))., - 1

= IVNS(F(s))1 + N(F(s)),

Thus IVNS(F(s')), + N(F(s')), = IVNS(F(s))o[+ N(F(s))° and F(s') > F(s)
contradicting the definition of F(s).

Thus our assumption is incorrect and F(s') = F(s) as desired. 'This completes the proof
of Theorem 16. 01

Corollary 1T F remains constant between consecutive Write(W) actions for potent
writes W.

35

I

, --. . .-. U.-...U-U .-..-. P..-.-..-.-. ..-U - -. . , ._. _ . -. r,,% *.U o-.- ,- , €''' - -' € ,
_ .= " N . i

Proof of Corollary 17: We noted earlier that the only points at which the values

of VN[i,j], OVN[i,j], and PVN[i,j] may change are at the Write(W) actions for

writes W by writer i. Formally, if A is an action in an execution of the composition

automaton and if A is not equal to Write(W) for any write W, and if S' and s are the
states preceding and following A respectively, then:

VN[i,joi = VN[i,j],
PVN[i,j],, = PVN[i,j],
OVNti,jl,, = OVNti,j],

for all writers i and j. Consequently, F(s') = F(s). Theorem 16 implies that F(s') =

'V F(s) even if A = Write(W) for an impotent write W. Since Write(W) actions are
associated only with potent and impotent writes W, the correctness of the corollary
follows. 13

".-

Theorem 18 Let i be any writer and Wi be any impotent write by writer i. Then
there exists some writer j, j $ i and some potent write Wj by writer j such that
Scan(Wi) < Write(Wj) < Write(Wi).

Proof of Theorem 18: Let . be the state immediately following Write(Wi). Then
Wi is the last write by writer i for which Write(Wi) < a. Let j = F(s). Note j $ i
because Wi is impotent. Since, by Corollary 17, the value of F remains constant between
potent writes, we have j = F(s') where s' is the state following the last potent write Wj
for which Write(Wi) < s. Now Wj is clearly written by writer j as F(s') = j and Wj is

pP /potent. Because F equals j between s' and s, we know by definition of an impotent write
%, " that there can be no impotent writes W by writer j for which s' < Write(W) < s.

",.... Also, because Wj is the most recent potent write before s, we know that there can be

no potent writes W by writer j for which s' < Write(W,) < s. Therefore Wj is the
last write by writer j for which Write(Wj) < s.

Assume now that there is no potent write W for which Scan(Wi) < Write(W) <
Write(Wj). Then, in particular, Write(Wj) < Scan(Wi). By Theorem 7 this implies
that OVN[i,j]. = VN j,i] 8 . Thus j E VNS(i), \ VNS(j). and thus by Lemma 9,
VNS(j), is a proper subset of VNS(i).. By Corollary 12 we have IVNS(i),l + N(i), >

* IVNS(j),I + N(j).. This implies, by definition of F(s) that F(s) could not possibly
equal j. Thus our assumption is incorrect and there is a writer j, j $ i, and a potent
write W, by writer j for which Scan(W,) < Write(Wj) < Write(Wi). This completes
the proof of Theorem 18. 0

We are now ready to show how to insert the Atomic(W) action for each write W
* into a schedule of the m-writer n-reader atomic register.

1. For each potent write W, we will insert the action Atomic(W) immediately pre-
ceding Write(W). Clearly, Start(W) < Atomic(W) < Fini'h(W).

.. 36

2.

0

2. For each impotent write W, we know by Theorem 18 that there exists some potent
write W' such that Scan(W) < Write(W') < Write(W); let W' be the last such
potent write. Insert an action Atomic(W) immediately preceding Write(W').

* Again, since we are inserting Atomic(W) between Scan(W) and Write(W), it is
clear that Start(W) < Atomic(W) < Finish(W).

Note that we may have to insert several Atomic actions for impotent writes im-
meditately preceding a single potent write W'. This is not a problem; since we
have only m writers, there are at most m - 1 writers that could be performing
impotent writes at the point Write(W'). (Only one write by a given writer can
include the point Write(W').) We are thus inserting a finite number of actions
before any Write(W').

3. For each write W that times out, we know from the fact that it timed out that,
K' for some writer i, W saw the contents of writer i's register change twice. Since

the values in writer i's register that are compared between scans (the VN[ij],
OVN[i,j], PVN[ij], and Value[i]) change only at the points Write(W') for
writes W' by writer i that do not time out, the two observed changes must have

* been caused by separate writes by writer i. The second of these writes, call
it W', must have begun after the first finished. Thus we have Start(W) <
Scan(W') < Write(W') < Finish(W). Whether W' is potent or impotent,
we have Scan(W') < Atomic(W') < Write(W'), thus if we insert Atomic(W)
immediately preceding Atomic(W'), we will have Start(W) < Atomic(W) <
Finish(W).

Here, as was the case with impotent writes, we may have to insert several Atomic
actions immediately before a given Write action; here, as before, this causes no
problem.

Before we continue, there are a few things that we should note about our placement
of the Atomic actions for writes. First, for every write W that does not time out,
we have Scan(W) < Atomic(W) < Write(W). Second, if S is an schedule of the
composition automaton in which no Atomic actions have been inserted and t is a state
in S, then once the Atomic actions for writes have been inserted into S to yield S', the
most recent Atomic write action preceding t in S' is that of a potent write. Third, from
Corollary 17 we see that the value of F remains constant between consecutive Atomic

. actions of writes.

7.4 Placement of Reads

Now that all of the writes have been placed, we need to show that reads will behave in
0 the desired manner. This is demonstrated by the following theorem that, although it is

not constructive4 it does tell us that we may place the Atomic(R) actions for reads R
as follows:

SThis proof is constructive, in the sense that the placement of the reads can be computed given the
execution. The author presumably is claiming, correctly, that a reader cannot compute the placement

37

1"

.

1. If R contains the action Atomic(W) for the write W whose value it returns, then
Atomic(R) will be placed immediately following Atomic(W).

2. If R does not contain the Atomic(W) action for the write W whose value it returns

then Atomic(R) will be placed immediately following Start(R).

With the help of Theorem 19 we will show later why these insertions satisfy the condi-
tions we desire of them.

For writers, seeing three consecutive identical scans imposed strong restrictions on

the number and placement of writes during those scans. No such fact is true for readers.

The system could pass through a whole cycle between 1Scan(R) and 2Scan(R), and
the reader would be none the wiser. Also, the system can do an arbitrary amount of
computation between xScan(R)i and xScan(R)i+i, and so the values that the reader
sees may not correspond to any global state of the system. So, none of the lemmas
about VNS(i), will apply to VNS(i)R. Much of the work in this section involves
proving these lemmas.

Theorem 19 Let R be any read that does not time out. Let i be the number of the
writer whose value is chosen to be returned by R; i = F(R). Let W be the last write by
writer i for which Write(W) < 3Scan(R)i. Then the following hold.

1. Value(R) = Value(W).

2. Atomic(W) < Finish(R).

3. There does not ezist a write W' for which Atomic(W) < Atomic(W') < Start(R).

Proof of Theorem 19: We will prove the parts separately. Assume R, W, and i
are as defined above.

1. Since W is the last write by writer i for which Write(W) < 3Scan(R)i, and R
returns the value read by 3Scan(R)i from writer i's register, R returns the value
written by W.

* 2. Note that by the way we placed Atomic(W') actions for writes W', Atomic(W') <
Write(W') for all writes W'. By choice of W, Write(W) < 3Scan(R)i. By defi-
nition, of Finish(R), 3Scan(R)i < Finish(R). We conclude that Atomic(W) <
Finish(R).

of its reads.

-ed.

5 38

% %
% -

3. This is the hard part. We will derive a contradiction after demonstrating the
following sequence of propositions. Thus the first step of our proof is to assume
the negation of what we are trying to prove. Namely, assume that there exists
some write W' such that Atomic(W) < Atomic(W') < Start(R). Note that all
of the following propositions are dependent upon the existence of W' and that all
assume R, W, and i to be defined as above.

ND Proposition 19.1 There is no write W" by writer i for which

1Scan(R)i < Write(W") < 3Scan(R)i.

Consequently,

VN[i,j], = VN[i,j]R
%= OVN[i,j]o = OVN[i,j]R
% PVN[i,j]. = PVN[i,j]R

for all states a, 1Scan(R)i < s < 3Scan(R)i and all writers j. Also, W is the
. last write by writer i for which Write(W) < s for all states s, 1Scan(R)i < a <

3Scan(R)i.

Proof of Proposition 19.1: Let t and u be the states following 1Scan(R)i and
3Scan(R)i respectively. Since the last three scans made by R see the same values,
we have VN[i, i]t = VN[i, i]u. Assume there exists some write W" by writer i
such that lScan(R)i < Write(W") < 3Scan(R)i. Then by Lemma 3 there exists
some write W' by writer i for which t < Scan(W') < Write(W') < u; let W."
be the last such write. Then by the way we placed the Atomic actions for writes,
we have Scan(W') < Atomic(W') < Write(W.'). Since we have just chosen
W" to be the last write by writer i for which Write(W"') < u, W" must also be
the last write by writer i for which Write(W') < 3Scan(R)i. Then by choice of
W, we have W = W"'. But we have assumed

Atomic(W) < Start(R)

while
Start(R) < 1Scan(R) < t < Scan(W"') < Atomic(W').

This contradiction implies that our assumption is incorrect and the proposition is
proved. 0

Proposition 19.2 Scan(W) < Start(R).

Proof of Proposition 19.2: By assumption, there exists some write W' for
which Atomic(W) < Atomic(W') < Start(R), thus Atomic(W) < Start(R).
Now by the way we placed the Atomic actions for writes, Scan(W) < Atomic(W) <Write(W). Thus we have Scan(W) < Atomic(W) < Start(R) as desired. 0

%1: 39

0

N,

Proposition 19.3 i .VNS(i)R.

Proof of Proposition 19.3: Let s be the state following 1Scan(R). Then
OVN[i, i], = OVN[i, i]R and VN[i, i]. = VN[i, i]R. Thus, since Lemma 2 implies
OVN[i, i], 4 VN[i, i],, we have OVN[i, i]R 0 VN[i, i]R. Hence i .VNS(i)R as

€./ desired. 0

Proposition 19.1 showed that writer i is incapable of performing the Write actions
of any writes between 1Scan(R), and 3Scan(R)i. Since the principal values in
writer i's register (the VN[i,j], OVN[i,j], and PVN[i,j]) thus remain constant
between lScan(R)i and 3Scan(R)i, the interval from 1Scan(R), to 3Scan(R)i
forms a sort of "magic interval" in which we can infer many things about the
behavior of other writers. The following inequalities are particularly important in

this respect:

lScan(R)i < 2Scan(R)i < 3Scan(R)i < 3Scan(R)i

for all writers j, j < i, and

0 1Scan(R)i < 1Scan(R)i < 2Scan(R) < 3Scan(R)i

for all writers j, j > i. These inequalities are fundamental because they define
a..'. intervals, defined in terms of reads of writer j's register, that are contained within

the interval from 1Scan(R)i to 3Scan(R)i. Since these inequalities are fundamen-
tal to the proof of the remaining propositions, they will have the undesirable effect
of introducing a division into the cases of j < i and j > i in all of the following
propositions.

Proposition 19.4 (a) Let j be the number of any writer j < i. If j E VNS(i)R
then there is no write Wi by writer j such that Scan(W) < Write(Wj) <
3Scan(R)2 .

(b) Let j be the number of any writer i < j. If j E VNS(i)R then there is no
write Wj by writer j such that Scan(W) < Write(Wj) < 2Scan(R)j.

" Proof of Proposition 19.4:

.. (a) Assume otherwise, that there is some writer j, j < i, j E VNS(i)R that
performed a write Wj such that:

Scan(W) < Write(Wj) < 3Scan(R)j

* and let Wj be the last such write. Let s and t be the states following
3Scan(R)j and Write(W,) respectively. By Proposition 19.1, W is the last
write by writer i such that Write(W) < s. Then by Lemma 6 we have:

OVN[i,j], V UN[j,i]t.

04
"40

-- ...- ..-.--.-.---.- ,..--.. .-.-%.
-1~ ~ ~ M.AA.'A

Since Wi is the last write by writer j such that Write(Wi) < 3Scan(R)j,
VNj, i] remains constant between Write(Wj) and 3Scan(R)i; in particular,

VNt, i]t = VNU, i],R.

By Proposition 19.1, since lScan(R)i < s < 3Scan(R)i, we have:

OVN[i,j]R = OVN[i,j]..

Putting these equations together yields:

OVN[i,j]R = OVN[i,j]. $ VN[J, i]t = VN[j, i]R

contradicting our assumption that j E VNS(i)R. Thus our assumption is
incorrect and the first half of the proposition is proved.

(b) The second part of the proof of the proposition follows exactly like the first;
lScan(R)j replaces 2Scan(R)i, and 2Scan(R) replaces 3Scan(R)j.

This completes the proof of Proposition 19.4. 0

Proposition 19.5 Let j be any writer. If i E VNS(j)R then VNS(i)R is a
proper subset of VNS(j)R.

Proof of Proposition 19.5:

(a) Case 1: j < i. Since i E VNS(j),R we have OVNUj, iI]R = VN[i,j]R. Let Wi
be the last write by writer j for which Write(W) < 2Scan(R)j. Let a bethe state following 2Scan(R)j. By Proposition 19.1, VN[ij]. VN[i,j]R.

By choice of s, OVNj,i], = OVN[j,i]R and thus OVN[j,i], = VN[i,j],.
By Proposition 19.1 and choice of W, W is the last write by writer i for
which Write(W) < s. By choice of Wj, Wi is the last write by writer j for

• •which Write(Wi) < s. Then by Theorem 7, Write(W) < Scan(Wj). This,
of course, implies Scan(W) < Scan(Wj).
Let k be any writer for which k E VNS(i)R. Note then that by Proposi-
tion 19.3, k $ i. Let Wk be the last write by writer k for which Write(Wk) <
Scan(W). Then by Proposition 19.4, Wk is also the last write by writer k for
which Write(Wk) < 2Scan(R)j since 2Scan(R)j < 2Scan(R)k for k > i > j,
and 2Scan(R)j < 3Scan(R)k if k < i. Thus Wk is the last write by writer k
for which Write(Wk) < s. By choice of Wj, WVi is the last write by writer j
for which Write(Wj) < a. Since Write(Wk) < Scan(W) < Scan(Wi), by

., Theorem 7, we have:

OVN[j, k] = VN[k,jlI.

By choice of s,

OVN, k), =OVNjkJR.

0

41

0r
5W,

N%

Let u be the state following lScan(R)k. By proposition 19.2, Scan(W) <

*' Start(R), implying Scan(W) < Start(R) < u < 2Scan(R)i < s. Since, by

Proposition 19.4, there are no writes Wk by writer k for which Scan(W) <

Write(W') < s, VN[k,j]s, is constant for states s', Scan(W) < s' < s; in

particular,particularV N[k, j). = V N[k, j]u.

By choice of u,

VN[k,j], = VN[k,j]R.

Putting the above equations together, we get:

OVN[j,k]R = OVN[j,k], = VN[k,j]a = VN[k,j]u = VN[k,j]R.

Since VN[k,j]R = OVN[j,k]R, we have k E VNS(j)R. Since k was an arbi-

trary element of VNS(i)R, VNS(i)R C VNS(j)R. Since i E VNS(j)R but

by Proposition 19.3, i V VNS(i)R, VNS(i)R is a proper subset of VNS(j)R.

(b) Case 2: i < j. The proof of this case is very similar to, although not identical

to, that of the first case, so we will omit many of the details. Let Wj be the

last write by writer j for which Write(Wj) < lScan(R)j. Let a be the state

following lScan(R)i. As before, we can show Write(W) < Scan(Wj), and

thus Scan(W) < Scan(W,).

Let k be any writer for which k E VNS(i)R, and let Wk be the last write

by writer k for which Write(W) < Scan(W). Then by Proposition 19.4,

Wk is also the last write by writer k for which Write(Wk) < lScan(R),

since 1Scan(R)i < 2Scan(R)k. As before, Wi and Wk are the last writes by
writers j and k respectively for which Write(W) < 3 and Write(Wk) < s.

Again, we have OVNj,k], = VN[k,j,. Again, OVNU,k 8 = OVNj,k]R.
Since there are no writes Wk' by writer k for which Scan(W) < Write(Wk) <

2Scan(R)k and Scan(W) < 3 < 2Scan(R)k, we have VN[k,j], = VN[k,j]. =

VN[k,j]R where u is the state following 2Scan(R)k. Thus VN[k,j]R

OVNU, k]R and as before, VNS(i)R is a proper subset of VNS(j)R.

Since i E VNS(j)R implies i $ j, the proofs of the above two cases complete the

* proof of the proposition. 0

* Proposition 19.6 Let j be any writer, j $ i.

(a) If j < i and if there is some write W, by writer j such that 2Scan(R) <

Write(Wj) < 3Scan(R)j, then OVN[j, i]R = VN[i,j]R, i.e., i E VNS(j)R.

(b) If i < j and if there is some write Wi by writer j such that 1Scan(R)j <

*.Write(Wj) < 2Scan(R)j, then OVN[j, i]R = VN[i,j]R, i.e., i E VNS(j)R.

Proof of Proposition 19.6:

42

A* ., . : .' ,' , l t ,.
"

. . . . '': ''-'.. .'. -, -'.,.. . ,.Z'.... .,. .Z , ,' :'w' ,

(a) Let Wj be the last write by writer j such that 2Scan(R)i < Write(W) <
3Scan(R)i. Let s and t be the states following 2Scan(R)i and 3Scan(R)j
respectively. Now since the last three scans of R see the same values for the
VN's, VN[j,j]. = VNj,j]t. Thus by Lemma 3 there exists at least one
write WI. by writer j such that s < Scan(W) < Write(W) < t; since W
is the last write by writer j for which . < Write(Wj) < t, we consequently
have s < Scan(Wj) < Write(W) < t. Note then that we have the following
order:

lScan(R)i < 2Sean(R)j < s < Scan(Wj) < 3Scan(R)j < t < 3Scan(R)j.

By choice of t,
OVNj, i]R = OVN[j, ilt.

Since 1Scan(R)i < t < 3Scan(R)i, by Proposition 19.1 we have

VN[i,lj]R = VN[i,j]t.

* Also by Proposition 19.1, W is the last write by writer i for which Write(W) <
t. Furthermore, by choice of Wi, Wj is the last write by writer j for
which Write(Wj) < t. By Proposition 19.1, Write(W) < 1Scan(R), thus
Write(W) < 1Scan(R)i < Scan(Wi), and by Theorem 7 we have

VN[i,jlt = OVNj,i]t.

Putting all these equations together yields:

VNti,j]R = VN[i,j]t = OVNtj,i]t = OVN[j,i]R.

- (b) Since i < j implies 1Scan(R)i < 1Scan(R)i < 2Scan(R)i < 3Scan(R)i,
the second part of the proof of the proposition follows exactly like the first;
U. 1Scan(R)i replaces 2Scan(R), and 2Scan(R)j replaces 3Scan(R)j.

This completes the proof of Proposition 19.6. 0

* Proposition 19.7 Let j be any writer, j # i.

(a) If j < i and there is some write Wi by writer j such that 2Scan(R), <
Write(Wj) < 3Scan(R)j then IVNS(j)RI > IVNS(i)RI.

(b) If i < j and there is some write Wj by writer j such that 1Scan(R)j <
Write(Wj) < 2Scan(R)j then IVNS(j)RI > IVNS(i)RI.

Proof of Proposition 19.7: This follows directly from Proposition 19.5 and
Proposition 19.6. 0

Proposition 19.8 Let j be any writer, j i.

43

K-'

(a) If j < i and there is some write Wi by writer j such that 2Scan(R)j <
Write(W,) < 3Scan(R)j then N(i)R = 0.

(b) If i < j and there is some write W i by writer j such that lScan(R)j <
Write(Wj) < 2Scan(R)j then N(i)R = 0.

Proof of Proposition 19.8:

(a) Let x and y be the states following 2Scan(R)i and 3Scan(R)j respectively.
Then VNj,jl,, = VNU,j],. Thus by Lemma 3, we may let Wi and Wj be
the last two writes by writer j such that

x < Scan(W;) < IVrite(W) < Scan(Wj) < Write(Wj) < y.

Let a, t, u, and v be the states following Scan(W), Write(Wj), Scan(Wj),
and Write(W) respectiveley. Then by Proposition 19.1,

OVN[i,j], = OVN[i,j]. = OVN[i,j]R.

"" Also, by Lemma 1, we have

.?j VNUj, il, A OVN[i, jlu

VN[j,i]t # OVN[i,j].
PVN[j, i]v = VN[j, i]t.

Since Wj is the last write by writer j for which Write(W) < 3Scan(R)j, we
have

VN[j,i]R = VN[j, fl,
PVN[j,i]R = PVNj,i],

Putting this all together, we get:

VN[, i]R = VNj, i] # OVN[i,j]u = OVN[i,j]R

PVN[j, i]R = PVN[j, i], = VN[j, i]t 0 OVN[i,j]. = OVN[i,j]R.

* We conclude N(i)R = 0.

(b) The second part of the proof of the proposition follows exactly like the first if
we replace 2Scan(R)i by 1Scan(R)j and replace 3Scan(R)j by 2Scan(R)j.

This completes the proof of Proposition 19.8. 0

• -Proposition 19.9 Let j be any writer, j $ i.

(a) If j < i then there is no write by writer j such that 2Scan(R)3 < Write(Wj) <
3Scan(R)j.

44

0L

i (b) If i < j then there is no write by writerj such that lScan(R)j < Write(Wj) <

2Scan(R)i.

Proof of Proposition 19.9: Assume otherwise. Then by Proposition 19.7 and
Proposition 19.8, we have:

IVNS(i)RI + N(i)R = IVNS(i)RI < IVNS(j)RI < IVNS(j)RI + N(j)R.

This contradicts the fact that F(R) = i and the proposition is thus proved by
contradiction. 3

Proposition 19.10 Let j be any writer, j 54 i.

(a) If j < i then for all states u, 2Scan(R)i < u < 3Scan(R)i, and all writers k,

VN[j,k],, = VN[j,k]R
OVNj,k], = OVNUj,kR
PVNj, k], = PVNJ, k]R.

,.: (b) If i < j then for all states u, lScan(R)j < u < 2Scan(R)j, and all writers k,

VN[j,k] = VN(, klR
5%~~ OVNUj,k],. = OVNUj,k]R

PVN,k],, = PVNU,k]R.

Proof of Proposition 19.10: This proposition is a direct consequence of Propo-
sition 19.9. 0
We now use these propositions to complete the proof of Theorem 19. Let s be
the state following 2Scan(R)i. Note that for all writers j, if j < i then we have
2Scan(R)j < s < 3Scan(R)j, and if i < j then we have lScan(R)j < s <
2Scan(R)j. Then by Proposition 19.10, we have

v U, . = VN ,[j,

* OVNU, k]R = OVN[j, k].

PVN[j, k]R = PVNj, k),

for all writers j and k. But this means that F(s) = F(R) = i.

Let W be the last potent write for which Write(W) < s. Since F remains
* constant between consecutive Write actions of potent writes, if t is the state

following Write(W) then F(t) = F(s) = i. Since Wi is potent, this implies
Wi was written by writer i. Since F(s') - i for all states s', t < s' < s, by
definition of impotent writes there can be no impotent write W,' by writer i for
which t < Write(W') < s. Then since Wi is the last potent write by writer i for

45

r0 %

which Write(Wj) < s, Wi is the last write, potent or impotent, by writer i for
which Write(W) < 9. By Proposition 19.1, W is the last write by writer i for
which Write(W) < j. Therefore W = Wi.
Since W is thus potent, Atomic(W) = Write(W). Since W is the last potent
write for which Write(W) < a, there can be no other writes W' such that
Atomic(W) < Atomic(W') < s as there are no potent writes W" in this interval
before which such Atomic(W') could be inserted. This contradicts our initial as-
sumption, upon which this whole sequence of propositions was based, that such a
W' exists. Thus our initial assumption is incorrect; there exists no write W' such
that Atomic(W) < Atomic(W') < Start(R).

This (finally) completes proof of Theorem 19. 0]

We will now use Theorem 19 to place the Atomic(R) actions for reads R. Let R be
any read. Then Atomic(R) will be placed as follows:

1. If R does not time out, then let i = F(R), and let W be the last write by writer i
for which Write(W) < 3Scan(R)i as we did in the proof of Theorem 19. Then
we have two cases:

(a) If Start(R) < Atomic(W) then by Theorem 19, Start(R) < Atomic(W) <
Finish(R). Thus if we insert Atomic(R) immediately following Atomic(W)
it is clear that Start(R) < Atomic(R) < Finiah(R). Also, since Theorem 19
states Value(R) = Value(W), it is clear that R returns the value of the last
write W for which Atomic(W) < Atomic(R).

a (b) If Atomic(W) < Start(R) then we will insert Atomic(R) immediately fol-

lowing Start(R). It is clear that Start(R) < Atomic(R) < Finish(R).
Also, since Theorem 19 states Value(R) = Value(W) and that there are no
writes W' for which Atomic(W) < Atomic(W') < Start(R), it is clear that
R returns the value of the last write W for which Atomic(W) < Atomic(R).

2. If R does time out, then we know from the fact that it times out that, for some
writer i, R saw the contents of writer i's register change twice. Since the val-
ues in writer i's register that are visible to readers (the VN[i,j], OVN[i,j],
PVN(i,j], and Value(i]) change only at the points Write(W') for writes W' by

* writer i ti-at do not time out, the two observed changes must have been caused
by separate writes by writer i. The write that caused the second of these ob-
served changes, call it W', must have begun after the first finished. Thus we
have Start(R) < Scan(W') < Write(W') < Finish(R). Whether W' is po-
tent or impotent, we have Scan(W') < Atomic(W') < Write(W'), thus if we
insert Atomic(R) immediately following Atomic(W') it is clear that we will have
Start(R) < Atomic(R) < Finish(R). Also, since the algorithm returns Value[i],

it is clear that Value(R) = Value(W'). Thus R returns the value written by the
last write W' for which Atomic(W') < Atomic(R).

0 46

A,.A-
0j?

" ..'"' .. :-''':" ,: - " """'.':':': "''---: ""':'::::::: -'": ' " :" ' '.' ''' '" - '' " " '"'' , "," i

Here, as was the case when we placed the Atomic actions for impotent writes and writes
that timed out, we may have to insert several Atomic read actions following a given
Atomic write action; again, this causes no problem.

.Thus for every read R and every write W we have placed internal actions Atomic(R)
and Atomic(W) such that:

1. Start(W) < Atomic(W) < Finish(W).

2. Start(R) < Atomic(R) < Finish(R).

3. If WR is the last write for which Atomic(WR) < Atomic(R) then Value(R) =
Value(WR).

This completes the proof of correctness.

8 Conclusions

Having thus completed our proof of correctness it is appropriate to reflect on the purpose
of this paper, to provide intuitive explanation and rigorous proof of the correctness of a
modified version of the multi-writer, multi-reader atomic register algorithm presented in
[PB]. We have gone about this in several ways. First, the algorithm is presented, at an
intuitive level, before the proof of correctness. This should hopefully arm readers of the
proof with an understanding of what needs to be proved and why. Second, the approach
to the problem is that taken in [BB]. An attempt is made to understand what different
reads and writes do so that their Atomic actions may be placed in an appropriate and
intuitively reasonable manner. Third, the proof has examined the algorithm at a finer
level of detail than that presented in [PB]. Arguments are presented at the level of the

Aindividual reads of writers' registers and not at the level of scans as a whole. The result
of this detailed proof was to find two problems with the original algorithm. The detailed
approach to proof is not, however, without its faults; it is possible to be so attentive to
detail that the proof becomes little more than an exercise in symbol manipulation to
those not already intimiately familiar with the algorithm. Thus while care was taken to
present detail where necessary, as was the case with arguments about individual reads in
scans, some arguments, particularly those dealing with the choice of VN's and PVN's

* by successive writes by a single writer, are obvious enough that excessive detail has been
omitted. It is hoped then that one will find in this paper a clear survey of the algorithm
in question in addition to a rigorous, but not overburdened, proof of correctness.

There are still a few aspects of the problem of constructing a multi-writer, multi-
reader atomic register that could use further work. First, the proof of Theorem 19 is not

• constructive and requires quite a bit of work to reach a contradiction. It would be nice
to have a positive, constructive proof that illustrates more clearly why readers always
return legitimate values. Second, the efficiency of this algorithm in terms of accessesto shared memory is not particularly good. Performing O(m) scans of m registers is a
considerable amount of work to do to write or read a single value.

47

6%

,. . p

-..

A Code and Counterexamples

A.1 The Code

Figure 4 presents the code for the reader's protocol as published in [PB] re-written in
the manner of the corrected code presented in the second part of this paper. Similarly,
figure 5 presents a re-written version of the code published in [PB].

The code in these figures is very similar to that presented in the first figures with
the following exceptions: only the VN's are compared across scans performed by the
readers and writers; readers only need to perform two consecutive identical scans before
they assume they have read a consistent state of the world; the PreOVN are read only
after three consecutive, identical scans have completed.

The labels in these code figures are identical in meaning to those presented earlier
with the exception that, since readers need perform only two consecutive, identical

N:. scans, we define only the names 1Scan(R)i and 2Scan(R)i for reads R that do not time
P out; 3Scan(R)i is not defined. Note also that we now have

* 3Scan(R)i < PScan(R),

instead of PScan(R), = 3Scan(R)i.

A.2 The First Counterexample

Let us first assume that the writer's protocol maintians a consistent state of the world;
that atomic write points may be inserted within the bounds of each write such that the
value of F is a constant between those points, and at each point p, the value of F at p
is the writer that performed the write whose atomic point most recently preceds p.

Thus if a read R is performed in an interval containing no atomic write points, we
can place an atomic read point anywhere between Start(R) and Finish(R), and R will
necessarily return the value written by the write whose atomic write point most recently
preceds R's atomic read point. Similarly, for reads R that time out, we have argued that
R must return the value of a write that was performed completely within the bounds
of Start(R) and Finish(R); if the atomic read point for R is placed immediately after

0 that of the atomic write point of the contained write, then again R necessarily returns
the value written by the write whose atomic write point most recently preceds its own
atomic read point.

. Unfortunately, it is not the case that all reads either are performed in write-free
intervals or explicitly time out, as figure 6 illustrates. Figure 6 shows the actions of
three writers labeled X, Y, and Z; we will assume in these figures that the writers
are presented in increasing order, thus X < Y < Z. In the interval pictured, X and
Z do not write while Y writes four times. The Scan and Write actions of the writes
are indicated by the points labeled by S and W respectively. Note that under S we

48

0%

,
: •

DEFINE
*Wrsser.Changed-Si'sce..Laat-Scan(i) M V 1 <:5 (Scan-.VNji,A] 0 Sa.,ed.Scan..VN~i~jj);

AnyChangeSvsce..Lost-Scan a U ir rtrCageLic.oeSo~)

VNS-Size(i) a 10I <. jS m,,Scan..OVNji,,I . Scan..VNUQj);

N(t) a 1 if AIi<m(0VN(ji, j4E (VNbj, i],PVN,, sf))
0 othe~wfse;

M n MAX {VNS-Some(i) + N(i)I :5 i :Sm5

F M MAX{1 < s < mIVNS.Ssze(i) + N(s) -)

% BEGIN
:1 Sarno-Scas :. 0; Tomed,Outg:o 0;

% ~FOR. o: I TO on DO Cit...ges-Sen(i):s 0; END;
AFOR m: I TO "' DO

w FOR) j 1 TO mn DO Scavs..VNjs,jJ VN~i,j]; END;
FOR) j I TO m DO Scan..OVNjz,,I := OVN(s,jl; END;
FOR j: 1 TO mn DO Scon.FVNji,,I :s PVN(i,,J; END;
Scan..ValuefsI :. Value[$); 4

END;
Samne.Scans:. 1;
REP EAT

FOR p :o 1 TO on DO
FORj): 2 TO m DO Saved.Sc-n.VNsjjjs ScOSL.VN(i,jJ, END;
FORj. I TO m DO Sa,,ed..Se,~..VN(i,jJ :e Scan.OVN(i,j; END;
FOR) I: 1 TO m DO Sa.,ed.Scon..PVN(s,j =o Scan.P VNji, ii; END;

END;
FOR- I TO mDO

w FOR): I TO mn DO Scon.VNjiej:, VNfI,j ; END;
FOR, :. I TO m DO Scan..OVN i,j] ;= OVNjij END;
FOR, j: 1 TO m, DO Sc ,,.PVN s,, :. PVN i,,]; END;

EIiScau..value($): =Volue(s); A

FOR i: 1 TO m DO
IF Wre ter.C han pod-Sinet-Lat.Sea.(i)
THEN Change..Seen(j . Cha..ges-Seen.fl + 1;
END;

END;
IF Anv..C hange -Sm ne..Las.Scan
THEN Savne-Scan. :o 1;

FOR s :o I TO in DO
IF Chsanges-Seen(iJ - 2 THEN Timned-O&t: s; END;

END;
* ELSE Same-Scans. = Some-Scans + 1;

END;
UNTIL Same-Scans = 2 OR T.med..Out 0 0;
IF Tsmed..Out 0 0
THEN RETURN(Scon-Volue(Timd.Outi);

ELSE RETURN(Scan..Value(FI);
END;

* END,

Figure 4: The reader's protocol.

49

56!

DEIN

V DBEFINE

SaE -ScnsN 0; Tsmed-Out :.0;

FOR g is1 TO mn DO Change sSeen.] : is0; END;
4"FOR t . ITO inDO

w FOR j =I TO in DO Scan..VN(.,,l: VN~esjl; END;
FOR j 1 TO in DO Scan..OVN[,,?):- OVNI,j); END;
FOR I= 1 TO in DO Scan-PVN(.,jl :. PVN(i,ji; END;
Scan..Volue[sj :- Valsu.(a]; -e

END;
- Same-Scans. 1;

% REP EAT
FOR I TO m DO

FOR, .m 1 TO in DO Sa..ed.Scan..VN(..jj - Seon-VNf.,,J; END;
FOR, j: TO m DO Save.scan.OVNj..il I Scan..OVN[s,j); END;
FORJ j! 1 TO in DO Savd-Scan.PVN i.~ Scan..PVN(s,j3; END;

END;
* 's'.IF Same-Scans es I

THEN
FOR.- I TO mn DO

* *P PreOVN(k, sl:. Scan..VNI., k); 4
END;

-' END,
FOR I = TO in DO

w FOR~ -: 1 TO mn DO Scan-VN[.,)j as VN[.,j); END;
% FORj I TO in DO Scan-OVN[..,):iw OVN[s,jJ; END;

FORj I TO in DO Scan..PVN[.,&] PVN(s.,j; END;
Scan-Value(.]:e: Value[*]; 4

.4,..END;
FOR -1 TO m DO

IF Wr.ter-Changed-Sivce..Lost-Scon(.)
THEN Changes Seen(*) Chanes-Sien~sj + 1;
END;

4.. END;
IF Anif-.ChangeSnce.Last-Scan
THEN Some-Scans :v;I

FOR. - 1 TO in DO
IF Changes-Seen(sJ se 2 THEN Timed.Out: s ; END;

END.
ELSE Sane-Scansa = Same-Scans + 1;
END.

UNTIL Same-Scans. 3 OR Timed-Out ;(0;
IF T.med.Out # 0
THEN RETURN;

* % ELSE
FOR, I TO mDO

w PScon-P~eOVN(.. kJ PreOVNI. hj; 4
.0 END,

*FOR. =1TOmDO
.4 VNkg]c = AnV({1, 2,3,4) \ (Scan..VN[h, il, Scan-OVN[., k],PScan-.PreOVN(i..kj});

OVN[~. '1 = Scan..VN(s, kJ;
* PVN[k,.] = Scan-VNik, iJ;

END.
Vai..e(h) VALUE;4

RETURN.
END,

END;

* Figure 5: Writer k's protocol.

05

&ago -j-%50

0 k6

4 .

0X

S W S V S W S W
y A * C C *

." Figure 6:

.. .. are lumping together all three consecutive, identical scans made by a writer, as well a
".' the PWrite action. Also included in the diagram are two scans of the three writers'
' , registers made by a reader as part of a single read R. The * signs denote the atomic read
,F. points of the reads of the individual writers' registers performed as part of the scans.
• - Thus writer Y starts with a complete write A. This is followed by the complete irst

.. scan of the read R. This is then followed by three more complete writes by writer Y-'- and the final scan of R.

(-)..Write A sees the current VN's posted by all three writers and records them as its
' .'..OVN[i,j]'s when it writes, while changing its own set of VN[i,j]'s. At this point, the
i! state of the world is seen by the first scan of read R. Write B then writes a new set

of VN[i,j]'s which by choice must differ from those written by write A. If the second
scan of R is to read the same VN's as the first scan we see that writer Y must write
again (indeed twice since the protocol requires a minimum of three writes for a writer to

, restore its VN for itself) to restore the VN's that had been written as part of write A.
• "- This having been accomplished, the second scan of read R is performed and returns the
~same state of the world as was seen by the first scan of R. Thus the reader performing

--'.:read R cannot tell that a write has occured between the two read scans, although several
'- ",have, and proceeds to return a value based upon the information observed by the two

/.." scans.

'f"...One may ask if the value returned in the above example will violate the atornicity
• requirements for the three-writer register construction. In this case, the answer is that
- -'."the value returned is legitimate. The value returned is that written by write D. Since

write D is completely contained within the bounds of read R, its atomic action is as
-,..-'"well, and as in the case of the timed out reads, it is legitimate to place the atomic read
- "-iaction of R immediately following the atomic write action of D. In [PB], R is referred
• to as having timed out without knowing that it did so. That paper then attempts to
i generalize the argument, used above to demonstrate the need for C and D if the scans
• • of R are to agree, to provide a proof that when a writer times out without knowing it
, has done so, it still returns a correct value. It was the study of that proof that led to
.the development of the first cutrxmltothe cretssof the algorithm, thus it

'..51

%,% % * 1, .N-

$4

1 I w 'hR rwu '

pWX

I !

S W V
S W

y A • B S U V S

S E F G ,

Figure 7:

is instructive to repeat it here.

Given the last two scans of a read R as shown in figure 7, assume that the values
of the VN's seen by the two scans are identical. Now divide the writers into two sets,
the "changing" writers that performed the Write action of some write between the two
scans of R. and the "unchanging" writers that did not perform the Write action of any
write between the two scans of R. By that definition, writers Y and Z are changing
writers while writer X is an unchanging writer in figure 7. Now by reasoning presented
earlier, if the two scans of R are to see the same VN's for all writers, writes C and
D must occur between Write(B) and the second scan of read R; in general, every
changing writer must perform a complete write between the two scans of R. Thus at
the second scan of R, all of the changing writers will be observed to have "seen" the
VN's of the unchanging writers whereas the unchanging writers will be observed not
to "see" the VN's of any of the changing writers. Also, since each changing writer has
written at least twice between the most recent write by any unchanging writer and the
second scan of R, we should have N(i) = 0 for all unchanging writers i. Thus it is
completely impossible for the value of an unchanging writer to be returned if there exist
any changing writers. If the value returned by R is read from the register of a changing
writer, then it was written by a write that occured entirely between the two scans of
R. If the value returned is read from the register of an unchanging writer, then there
are no changing writers, and the last two scans of R occured in an interval in which no
writing took place. Thus R returns a legitimate value.

qi The problem with this proof is shown in figure 8 which demonstrates the real picture

of how read scans occur. The notions of "the point at which the first scan of R occured"
and thus of "changing" and "unchanging" writers, are therefore not well defined. Sup-
pose the following definition of "changing" writer is made to eliminate ambiguity: a
writer i will be defined to be a changing writer if it completed a write W between the

4 reads of its register in the first and second consecutive, identical scans made by the
read R; that is, if lScan(R)i < Write(W) < 2Scan(R)i. Thus in figure 9, writer Z is a
changing writer while writers X and Y are not. The same reasoning as above then shows
that some writes C and D must occur between Write(B) and the read, 2Scan(R)z, of

52

-p

4

.' 0•

k" Y

• " Figure 8:

..

X S E V

.i S *B W S C W S D W

VFigure 9:

writer Z's register in the second scan.

There is a problem with this however, that is demonstrated by figure 10. Assume
that the scans of the read R see the same VN's. Writer X is a changing writer while
writer Y is an unchanging writer. Writer Y will be seen to have observed the VN's
written by writer X during the write D. Writer X, on the other hand, will be observed to
have seen the VN's written by writer Y prior to the write E. Writer Y will consequently
be judged, correctly, to be the writer that wrote more recently before the second scan
of R, and its value, that written by E, will be returned by R. Read R thus returns
the value written by an unchanging writer despite the existence of a changing writer.

S A W S B V S c VS D V

';- Figure 10:

- =•

*

• '?/53

S V * *S V S V

X3222 1332111 32224322 2433 12223222

S H S W S V S V

2 3244 2122 3211

2111 31333 2111 3222

'V
Vr

8/,

*Figure 11: The first counterexample.

Clearly, the reasoning sketched above no longer works; one then asks if a conterexample
may be constructed to the algorithm in a similar manner.

The answer to this question is that we can. Such a counterexample is listed in
figure 11. The numbers following the vertical lines are the values of the various variables
following the actions to which the vertical lines are connected; the numbers below the
horizontal time-line for writer X refer, in order, to the VN[X, i], PVN[X, i], OVN[X, i],
and PreOVN[X, i]; the rows of numbers are presented in the same order as the time-
lines for the different writers. For example, following the first write by writer X, we
have,

VN[X,X]=I and VN[X,Y]=4

PVN[X,X] =3 and PVN[X,Y] =3

OVN[X,X] = 3 and OVN[X,Y] = 2
* PreOVN[X,X] = 3 and PreOVN[X,Y] = 2.

Then what this counterexample has done is to perform, without interruption, the first
scan of the read R as well as the read of writer X's register for the second scan of R.
Before the second scan of R gets to read the value in Y's register, however, we have
performed a series of writes that render completely meaningless the first values read.

* In particular, we have written so that the values of VN[Y, X] and VN[Y, Y] observed
by the second scan equal the values of these variables observed by the first scan; this
implies that the read R detects no writes occuring between its scans and will select a
value to return based on the values seen by the second scan. But for the values returned

., 54

VN

0,',, . - ,- - .,,. . , -,. . . .,- , .-,.-,%'.- -,,. . , , , .- d- - .- . ,

by the second scan we have:

1 = OVN[Y,X] $ VN[X,Y] =4 and 1 = OVN[YX] $ PVN[X,Y] =3

and

2=OVN[Y,Y]# VN[Y,Y] =3 and 1 =OVN[YX]7 VN[X,Y]=4

implying that N(Y) = 0 and JVNS(Y)I = 0. Also,

3 = OVN[X,X] = PVN[X,X] =3 and 2 = OVNtX,Y] = PVN[Y,X] = 2

implying that N(X) = 1 while IVNS(X) = 0. The value of F computed on the basis
of these values is F = X. Thus the read R will return the value read from the register
of writer X during its second scan. Since this value was written by the first write shown
for writer X, and the atomic write action of the first write shown for writer Y must be
interposed between the atomic write action of the first write shown for writer X and

i-v the first scan of R, the atomicity condition is violated.

* One will note that the first and second scans did not observe the same values for
OVN[Y, X]. One might ask then if the algorithm would perform correctly if not only
the VN's, but the PVN's and OVN's as well were required to be constant across the
two scans of a read. A counterexample communicated by Burns shows that both scans
of a read R may see the same values for the VN's, PVN's, and OVN's, and still return
a value that is no longer valid.

A.3 The Second Counterexample

In our discussion of the previous counterexample, we assumed that the writers write in
a manner that respects the atomicity condition. This turns out not to be so, the result
being another counterexample to the correctness of the algorithm.

Recall that when a writer is reading the values that it needs to determine what to
write, it reads the OVN's before the PreOVN's. At the same time, however, writers
write their PreOVN's before they write their OVN's. This leads to trouble.

. Figure 12 presents an example of how this fact can result in the improper execution
of the algorithm. The second write by writer X scans the value OVN[Y, X] before the
write point of the first write by writer Y. Before the second write by writer X gets
around to reading PreOVN[Y, X] (at the point marked "PS"), however, writer Y both
writes and scans; the write by writer Y invalidates the value of OVN[Y, X] seen by

0 writer X while the scan invalidates the value of PreOVN[Y, X]. This means that the
second write by writer X completely falls to see the value of OVN[Y, X] written by the
first write by writer Y.

Let P be the point immediately preceding the Write action of the second write by
writer X. Let Q be the point immediately following the same action.

55

0

S . S P

3222 1 '

3222 4333 1444
3222 4322 3422

4333
1433

S v S

2111 2113 3233 3234
2111 2112 3222
2111 2112 3222 3223

2112 3223

2111 3233
2111 3222
2111 3222

Figure 12: The second counterexample.

We have the following set of equations at P:

3 = OVN[X, X] = PVN[X, X] = 3 $ VN[X, X]- 4

2 = OVIV[X,Y] PVN[Y,X1 = 2 $ VN[Y,X1 = 3

3 = OVN[X, Z] = VN[Z, X] = 3

Thus N(X)= 1 and IVNS(X)I = 1.

3= OVN[Y, X] = PVN[X, Y] = 3 5 VN[X, Y] =4

2= OVN[Y, Y] = PVN[Y, Y] = 2 $ VN[Y, Y] = 3

2= OVN[Y,Z] = PVN[Z, Y = 2 $ VN[Z, Y] = 3

Thus N(X) = I and IVNS(X)l = 0.

3= OVN[Z, X] = PVN[X, Z =3 $ VN[X, Z] =4

2 = OVN[Z,Y] = PVN[Y, Z] = 2 VN[Y, ZI = 3

2 = OVN[Z, Z] = PVN[Z, Z] = 2 5 VN[Z, Z] = 3

Thus N(X) = 1 and IVNS(X)I = 0. Consequently, F = X at P.

* 56

- ~ ~ : d.*~~ ' f 4

*..--2

- We have the following set of equations at Q:

4 OVN[X,X] = PVN[X,X] = 4 # VN[X,X] 1

2= OVN[X,Y] = PVN[Y,X] = 2 0 VN[Y,XJ = 3

3 = OVN[X,Z] = VN[Z,X] = 3

Thus N(X) = 1 and IVNS(X)I = 1.

3 = OVN[Y,X]= VN[X,Y] = 3

2 = OVN[Y,Y] = PVN[Y,] = 2 # VN[YY] = 3

2 = OVN[Y, Z] = PVN[Z,Y] = 2 $ VN[Z,Y] = 3

Thus N(X) = 1 and IVNS(X) = 1.

3 = OVN[Z,XI # PVN[X, Z] = 4and3 = OVN[Z,X] # VNtX,Z] = 1

2 = OVN[Z,Y] = PVN[Y, Z] 2 # VN[Y,.Z] = 3

S2 = OVN[Z, Z] = PVN[Z, Z] 2 $ VN[Z, Z] = 3

Thus N(X) = 0 and IVNS(X) = 0. Consequently, since Y > X, F = Y at P.

This is not good because it implies that the most recent atomic write action preceding
P is not that of the first write by writer Y whereas the most recent atomic write action
preceding Q is that of the first write by writer Y. Thus these writes were not performed
in a simulated atomic manner.

The obvious fix to this problem is to scan the PreOVN values earlier. The code for
the writer's protocol that is proved correct in the previous part of this paper performs
the scan of the PreOVN values between the second and third consecutive identical
scans of the writers' registers instead of after all three consecutive identical scans have
completed.

B References

,- [BB] Bloom, Bard, "Constructing Two-Writer Atomic Registers," Proceedings of the
Symposium on Principles of Distributed Computing, pp. 249-259, August 1987.

N. [IL] Israeli, A. and Ming Li, manuscript.

(LL] Lamport, Leslie, "On Interprocess Communication," Digital Systems Research
., Center Report 8.

[LT1] Lynch, Nancy A. and Mark R. Tuttle, "Hierarchical Correctness Proofs for Dis-
tributed Algorithms," Proceedings of the Symposium on Principles of Distributed
Computing, pp. 137-151, August 1987.

57

0:

[LT2] Lynch, Nancy A. and Mark R. Tuttle, "Hierarchical Correctness Proofs for Dis-
tributed Algorithms," Master's Thesis, Massachusetts Institute of Technology,
April, 1987. MIT/LCS/TR-387, April, 1987.

[LV] Li, Ming, and Paul Vitanyi, manuscript.

N[Ly] Lynch, Nancy A., "I/O Automata: A Model for Discrete Event Systems."

[P] Peterson, Gary L., "Time-Space Trade-Offs for Asynchronous Parallel Models: Re-
ducibilities and Equivalences,", Proceedings of the Eleventh Annual ACM Sym-
posium on Theory of Computing, Atlanta, 1979, pp. 224-230

- ~. [PB] Peterson, Gary L. and James E. Burns, "Concurrent Reading While Writing
- II: The Multi-writer Case," Proceedings of the Symposium on Foundations of

Computer Science, pp. 383-392, October 1987.

[VA] Vitanyi, Paul and Baruch Awerbuch, "Atomic Shared Register Access by Asyn-
chronous Hardware," Proceedings of the Symposium on Foundations of Computer

V. Science, pp. 233-243, October 1986.

0

S58
O

% %k

1
o ~pl

X .

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Cone 18 1 copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

A. V'!

44,

V

.44

0 -

44

s~.44

4

444.
9.

S

44

0

4.9 NI

.4 I I mu Fill / V V
* 3 3 3 3 3 3 3

- ~jVj'~I~ ~ ~ 14'.j ~. ~ ~-v~r'--~ 7- V.
.'~ 'p1' ~ ~ ~, 4.44 4:~1K;:. 'K~ ~ 44
~4v. d, -. ~

